Jingxin Zheng, Lu Yang, Nan You, Baohong Ding, Hongtao Fan
{"title":"Chelating Cellulose for Removal of Heavy Metals","authors":"Jingxin Zheng, Lu Yang, Nan You, Baohong Ding, Hongtao Fan","doi":"10.1007/s11814-024-00230-1","DOIUrl":null,"url":null,"abstract":"<div><p>Cellulose is a renewable and promising material. However, native cellulose has to face the challenge of the removal of heavy metals with low efficiency which limits its application. In this work, a cellulose derivative with EDTA-like chelating groups (EDTA-CL) is designed and prepared by the chemical grafting of cellulose. Cellulose is partially oxidized to dialdehyde cellulose which is treated with 20% excess of diethylenetriamine through a Schiff base reaction for the preparation of the aminated cellulose. The amine groups of the aminated cellulose are carboxymethylated by reacting with 20% excess of bromoacetic acid through a substitution reaction. The high-efficient adsorption of the both ions by the EDTA-CL with high adsorptive amounts (Pb<sup>2+</sup>: 438.3 mg g<sup>−1</sup> and Cd<sup>2+</sup>: 287.2 mg g<sup>−1</sup>) can be accomplished by controlled parameters (pH of 4–6, contact time of 30 min and the dosage of 1 g L<sup>−1</sup>). The adsorptive processes of the both ions onto the EDTA-CL can be well fitted by pseudo-second-order and Langmuir equations. Thermodynamics data reveal that the adsorption of the both ions onto the EDTA-CL is a spontaneous and endothermic process. The loaded EDTA-CL can be regenerated five times with loss of adsorptive amounts (Cd<sup>2+</sup>: 14% and Pb<sup>2+</sup>: 17%).</p></div>","PeriodicalId":684,"journal":{"name":"Korean Journal of Chemical Engineering","volume":"41 9","pages":"2729 - 2739"},"PeriodicalIF":2.9000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11814-024-00230-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Cellulose is a renewable and promising material. However, native cellulose has to face the challenge of the removal of heavy metals with low efficiency which limits its application. In this work, a cellulose derivative with EDTA-like chelating groups (EDTA-CL) is designed and prepared by the chemical grafting of cellulose. Cellulose is partially oxidized to dialdehyde cellulose which is treated with 20% excess of diethylenetriamine through a Schiff base reaction for the preparation of the aminated cellulose. The amine groups of the aminated cellulose are carboxymethylated by reacting with 20% excess of bromoacetic acid through a substitution reaction. The high-efficient adsorption of the both ions by the EDTA-CL with high adsorptive amounts (Pb2+: 438.3 mg g−1 and Cd2+: 287.2 mg g−1) can be accomplished by controlled parameters (pH of 4–6, contact time of 30 min and the dosage of 1 g L−1). The adsorptive processes of the both ions onto the EDTA-CL can be well fitted by pseudo-second-order and Langmuir equations. Thermodynamics data reveal that the adsorption of the both ions onto the EDTA-CL is a spontaneous and endothermic process. The loaded EDTA-CL can be regenerated five times with loss of adsorptive amounts (Cd2+: 14% and Pb2+: 17%).
期刊介绍:
The Korean Journal of Chemical Engineering provides a global forum for the dissemination of research in chemical engineering. The Journal publishes significant research results obtained in the Asia-Pacific region, and simultaneously introduces recent technical progress made in other areas of the world to this region. Submitted research papers must be of potential industrial significance and specifically concerned with chemical engineering. The editors will give preference to papers having a clearly stated practical scope and applicability in the areas of chemical engineering, and to those where new theoretical concepts are supported by new experimental details. The Journal also regularly publishes featured reviews on emerging and industrially important subjects of chemical engineering as well as selected papers presented at international conferences on the subjects.