Zinc-Oxide-Nanoparticles in Conjugation with Zn-Solubilizing Bacteria Improve Zn Biofortification and Nitrogen Use Efficiency in Wheat

IF 3.4 3区 农林科学 Q2 ENVIRONMENTAL SCIENCES Journal of Soil Science and Plant Nutrition Pub Date : 2024-07-22 DOI:10.1007/s42729-024-01926-3
Imran Mahmood, Ahmad Sami, Saeed Ahmad Asad, Ghulam Abbas Shah, Rashid Mehmood Rana, Naveed Iqbal Raja, Ahmad Sher, Zia-ur-Rehman Mashwani, Abdul Qayyum, Javed Iqbal, Tahir Hussain Awan
{"title":"Zinc-Oxide-Nanoparticles in Conjugation with Zn-Solubilizing Bacteria Improve Zn Biofortification and Nitrogen Use Efficiency in Wheat","authors":"Imran Mahmood, Ahmad Sami, Saeed Ahmad Asad, Ghulam Abbas Shah, Rashid Mehmood Rana, Naveed Iqbal Raja, Ahmad Sher, Zia-ur-Rehman Mashwani, Abdul Qayyum, Javed Iqbal, Tahir Hussain Awan","doi":"10.1007/s42729-024-01926-3","DOIUrl":null,"url":null,"abstract":"<p>Soil zinc (Zn) deficiency is a major cause of Zn-malnutrition, low yields, and low nitrogen use efficiency (NUE) in wheat. Improving grain Zn concentration and NUE in wheat without compromising yield has become a global concern. A study was therefore conducted to explore the potential of Zn-solubilizing bacteria (ZnSB) and Zn oxide nanoparticles (ZnONPs) for improving Zn biofortification and nitrogen use efficiency (NUE) in wheat. Two strains of ZnSB (<i>Pseudomonas aeruginosa</i> (YZn1) and <i>Stenotrophomonas maltophilia</i> (WZn1)) were isolated from field soil and selected for study based on Zn solubilization efficiency, IAA production, and Zn release efficiency. The potential of soil and foliar applications of ZnONPs separately, or in combination with consortia of ZnSB, to enhance wheat Zn concentrations, productivity and NUE was evaluated. The treatments tested were: Control (T<sub>1</sub>), ZnSB (T<sub>2</sub>), ZnSO<sub>4</sub> (soil application; T<sub>3</sub>), ZnONPs (foliar application; T<sub>4</sub>), ZnSB + ZnONPs (soil and foliar applications respectively; T<sub>5</sub>), and ZnONPs + ZnSB (soil applications of both) + ZnONPs (foliar application) (T<sub>6</sub>). Soil application of ZnONPs when combined with ZnSB and a foliar application of ZnONPs (T<sub>6</sub>) significantly (<i>P</i> ≤ 0.05) improved yield and yield traits compared to the control (T<sub>1</sub>) and ZnSO<sub>4</sub> (T<sub>3</sub>) treatments. Notably, T<sub>6</sub> increased chlorophyll SPAD value, 1000-grain weight, grain yield, harvest index (HI), and grain Zn concentration by 27.61%, 29.63%, 53.54%, 23.07%, and 89.06% respectively, over control (T<sub>1</sub>). The T<sub>6</sub> treatment also increased grain zinc concentration and yield relative to T<sub>3</sub> by 20.95% and 6.12% respectively. The NUE was also increased in response to T<sub>6</sub>, with significantly higher nitrogen physiological efficiency (48.79 g g<sup>− 1</sup>), agronomic use efficiency (27.08 g g<sup>− 1</sup>), nitrogen harvest index (80.84%), and partial factor productivity (61.34 g g<sup>− 1</sup>). However, the maximum Zn apparent recovery (71.02%) was observed in plants subjected to T<sub>5</sub>. Combined application of ZnSB and ZnONPs in the soil along with foliar application of ZnONPs can replace conventional application of ZnSO<sub>4</sub> for maximum yield, Zn-enriched grain, and improved NUE in wheat when grown in Zn-deficient soils.</p>","PeriodicalId":17042,"journal":{"name":"Journal of Soil Science and Plant Nutrition","volume":"45 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soil Science and Plant Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s42729-024-01926-3","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Soil zinc (Zn) deficiency is a major cause of Zn-malnutrition, low yields, and low nitrogen use efficiency (NUE) in wheat. Improving grain Zn concentration and NUE in wheat without compromising yield has become a global concern. A study was therefore conducted to explore the potential of Zn-solubilizing bacteria (ZnSB) and Zn oxide nanoparticles (ZnONPs) for improving Zn biofortification and nitrogen use efficiency (NUE) in wheat. Two strains of ZnSB (Pseudomonas aeruginosa (YZn1) and Stenotrophomonas maltophilia (WZn1)) were isolated from field soil and selected for study based on Zn solubilization efficiency, IAA production, and Zn release efficiency. The potential of soil and foliar applications of ZnONPs separately, or in combination with consortia of ZnSB, to enhance wheat Zn concentrations, productivity and NUE was evaluated. The treatments tested were: Control (T1), ZnSB (T2), ZnSO4 (soil application; T3), ZnONPs (foliar application; T4), ZnSB + ZnONPs (soil and foliar applications respectively; T5), and ZnONPs + ZnSB (soil applications of both) + ZnONPs (foliar application) (T6). Soil application of ZnONPs when combined with ZnSB and a foliar application of ZnONPs (T6) significantly (P ≤ 0.05) improved yield and yield traits compared to the control (T1) and ZnSO4 (T3) treatments. Notably, T6 increased chlorophyll SPAD value, 1000-grain weight, grain yield, harvest index (HI), and grain Zn concentration by 27.61%, 29.63%, 53.54%, 23.07%, and 89.06% respectively, over control (T1). The T6 treatment also increased grain zinc concentration and yield relative to T3 by 20.95% and 6.12% respectively. The NUE was also increased in response to T6, with significantly higher nitrogen physiological efficiency (48.79 g g− 1), agronomic use efficiency (27.08 g g− 1), nitrogen harvest index (80.84%), and partial factor productivity (61.34 g g− 1). However, the maximum Zn apparent recovery (71.02%) was observed in plants subjected to T5. Combined application of ZnSB and ZnONPs in the soil along with foliar application of ZnONPs can replace conventional application of ZnSO4 for maximum yield, Zn-enriched grain, and improved NUE in wheat when grown in Zn-deficient soils.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧化锌纳米粒子与锌溶解细菌共轭可提高小麦的锌生物强化能力和氮利用效率
土壤缺锌是造成小麦锌营养不良、产量低和氮利用效率低的主要原因。在不影响产量的前提下提高小麦籽粒锌浓度和氮利用效率已成为全球关注的问题。因此,我们开展了一项研究,探索锌溶解细菌(ZnSB)和氧化锌纳米颗粒(ZnONPs)在改善小麦锌生物强化和氮利用效率(NUE)方面的潜力。研究人员从田间土壤中分离出两株 ZnSB 菌株(铜绿假单胞菌(YZn1)和嗜麦芽僵菌(WZn1)),并根据其锌溶解效率、IAA 产量和锌释放效率进行了筛选。研究评估了土壤和叶面单独施用 ZnONPs 或与 ZnSB 复合菌群结合施用 ZnONPs 提高小麦锌浓度、生产力和 NUE 的潜力。测试的处理有对照组(T1)、ZnSB(T2)、ZnSO4(土壤施用;T3)、ZnONPs(叶面施用;T4)、ZnSB + ZnONPs(分别为土壤和叶面施用;T5)以及 ZnONPs + ZnSB(两者均为土壤施用)+ ZnONPs(叶面施用)(T6)。与对照(T1)和硫酸锌(T3)处理相比,土壤施用 ZnONPs + ZnSB 和叶面施用 ZnONPs(T6)显著提高了产量和产量性状(P ≤ 0.05)。值得注意的是,T6 比对照(T1)的叶绿素 SPAD 值、千粒重、谷物产量、收获指数(HI)和谷物锌浓度分别提高了 27.61%、29.63%、53.54%、23.07% 和 89.06%。与 T3 相比,T6 处理的谷物锌浓度和产量也分别提高了 20.95% 和 6.12%。T6 处理的氮利用效率也有所提高,氮生理效率(48.79 克/克)、农艺利用效率(27.08 克/克)、氮收获指数(80.84%)和部分要素生产率(61.34 克/克)均显著提高。然而,在施用 T5 的植株中观察到最大的锌表观回收率(71.02%)。在缺锌土壤中种植小麦时,在土壤中联合施用 ZnSB 和 ZnONPs 以及叶面施用 ZnONPs 可以取代传统的 ZnSO4 施用,从而获得最高产量、富含锌的谷物以及更好的氮利用效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Soil Science and Plant Nutrition
Journal of Soil Science and Plant Nutrition Agricultural and Biological Sciences-Soil Science
CiteScore
5.90
自引率
10.30%
发文量
331
审稿时长
9 months
期刊介绍: The Journal of Soil Science and Plant Nutrition is an international, peer reviewed journal devoted to publishing original research findings in the areas of soil science, plant nutrition, agriculture and environmental science. Soil sciences submissions may cover physics, chemistry, biology, microbiology, mineralogy, ecology, pedology, soil classification and amelioration. Plant nutrition and agriculture submissions may include plant production, physiology and metabolism of plants, plant ecology, diversity and sustainability of agricultural systems, organic and inorganic fertilization in relation to their impact on yields, quality of plants and ecological systems, and agroecosystems studies. Submissions covering soil degradation, environmental pollution, nature conservation, and environmental protection are also welcome. The journal considers for publication original research articles, technical notes, short communication, and reviews (both voluntary and by invitation), and letters to the editor.
期刊最新文献
Assessment of Management Practices for Improving Productivity, Profitability, and Energy-Carbon-Water Use Efficiency of Intensive Rice-toria-Sweet Corn System in Eastern India Enhancing Photosynthesis Pigment, Protein Content, Nutrient Uptake and Yield in Maize (Zea mays L.) Cultivars Using Vermicompost, Livestock Manure and Azotobacter chroococcum Phosphorus Solubilizing Microorganisms: An Eco-Friendly Approach for Sustainable Plant Health and Bioremediation Effect of Exogenous Chitosan on Physiological Characteristics, Photosynthetic Parameters, and Antioxidant Systems of Maize Seedlings Under Salt Stress Auxin-Mediated Modulation of Maize Rhizosphere Microbiome: Insights from Azospirillum Inoculation and Indole-3-Acetic Acid Treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1