Ludisbel León-Marcos, Elsa Fuente-Zapico, Agustín Romero-Vargas, Ana Blandino, Luis Isidoro Romero-García
{"title":"Ultrasound pretreatment of third-generation biomass (invasive macroalga Rugulopteryx okamurae) to obtain platform biocommodities","authors":"Ludisbel León-Marcos, Elsa Fuente-Zapico, Agustín Romero-Vargas, Ana Blandino, Luis Isidoro Romero-García","doi":"10.1007/s10811-024-03316-9","DOIUrl":null,"url":null,"abstract":"<p>Volatile fatty acids (VFA) and reducing sugars (RS) are widely used as platform molecules in biorefineries, facilitating the production of valuable biofuels and chemicals. From an environmental, economic and social perspective, third generation biomass, including macroalgae beach-cast, represents an innovative and optimal solution for the production of these commodities. This study explores the impact of ultrasound pretreatment on the invasive macroalga <i>Rugulopteryx okamurae</i>, aiming to produce RS and VFA through enzymatic hydrolysis and dark fermentation. Several ultrasound conditions were tested: amplitudes (0, 70-100 %), suspension volumes (300, 600 mL), and algal concentrations (4-8 %). Optimal results emerged with 100 % amplitude, 300 mL volume, and 4 % (w/v) algal concentration, leading to the maximum COD solubilization of 61.5 mg COD g-biomass<sup>-1</sup>. For enzymatic hydrolysis, the pretreated sample achieved maximum RS concentrations (0.124 g-RS g-biomass<sup>-1</sup>) with half the enzyme dosage required by the non-pretreated alga (25 vs 50 FPU g-biomass<sup>-1</sup>), implying significant economic benefits for large-scale processes. The kinetic model proposed by Romero-Vargas et al. aligned perfectly with the experimental data, obtaining higher values of all the kinetic parameters for the pretreated sample. Dark fermentation showed substantial increases in organic matter solubilization and VFA production (10.36 mg-HAc g-biomass<sup>-1</sup>) post ultrasound pretreatment: 21.1 % higher solubilization and 9.4 % increased VFA compared to non-pretreated biomass. The resulting VFA composition comprised 73 % acetic acid, 13 % propionic acid, and 8 % butyric acid. Utilization of chemical agents during sonication may further enhance overall processing yields.</p>","PeriodicalId":15086,"journal":{"name":"Journal of Applied Phycology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Phycology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10811-024-03316-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Volatile fatty acids (VFA) and reducing sugars (RS) are widely used as platform molecules in biorefineries, facilitating the production of valuable biofuels and chemicals. From an environmental, economic and social perspective, third generation biomass, including macroalgae beach-cast, represents an innovative and optimal solution for the production of these commodities. This study explores the impact of ultrasound pretreatment on the invasive macroalga Rugulopteryx okamurae, aiming to produce RS and VFA through enzymatic hydrolysis and dark fermentation. Several ultrasound conditions were tested: amplitudes (0, 70-100 %), suspension volumes (300, 600 mL), and algal concentrations (4-8 %). Optimal results emerged with 100 % amplitude, 300 mL volume, and 4 % (w/v) algal concentration, leading to the maximum COD solubilization of 61.5 mg COD g-biomass-1. For enzymatic hydrolysis, the pretreated sample achieved maximum RS concentrations (0.124 g-RS g-biomass-1) with half the enzyme dosage required by the non-pretreated alga (25 vs 50 FPU g-biomass-1), implying significant economic benefits for large-scale processes. The kinetic model proposed by Romero-Vargas et al. aligned perfectly with the experimental data, obtaining higher values of all the kinetic parameters for the pretreated sample. Dark fermentation showed substantial increases in organic matter solubilization and VFA production (10.36 mg-HAc g-biomass-1) post ultrasound pretreatment: 21.1 % higher solubilization and 9.4 % increased VFA compared to non-pretreated biomass. The resulting VFA composition comprised 73 % acetic acid, 13 % propionic acid, and 8 % butyric acid. Utilization of chemical agents during sonication may further enhance overall processing yields.
期刊介绍:
The Journal of Applied Phycology publishes work on the rapidly expanding subject of the commercial use of algae.
The journal accepts submissions on fundamental research, development of techniques and practical applications in such areas as algal and cyanobacterial biotechnology and genetic engineering, tissues culture, culture collections, commercially useful micro-algae and their products, mariculture, algalization and soil fertility, pollution and fouling, monitoring, toxicity tests, toxic compounds, antibiotics and other biologically active compounds.
Each issue of the Journal of Applied Phycology also includes a short section for brief notes and general information on new products, patents and company news.