Adib Saliba, Kifah Tout, Chamseddine Zaki, Christophe Claramunt
{"title":"Bridging Human Expertise with Machine Learning and GIS for Mine Type Prediction and Classification","authors":"Adib Saliba, Kifah Tout, Chamseddine Zaki, Christophe Claramunt","doi":"10.3390/ijgi13070259","DOIUrl":null,"url":null,"abstract":"This paper introduces an intelligent model that combines military expertise with the latest advancements in machine learning (ML) and Geographic Information Systems (GIS) to support humanitarian demining decision-making processes, by predicting mined areas and classifying them by mine type, difficulty and priority of clearance. The model is based on direct input and validation from field decision-makers for their practical applicability and effectiveness, and accurate historical demining data extracted from military databases. With a survey polling the inputs of demining experts, 95% of the responses came with an affirmation of the potential of the model to reduce threats and increase operational efficiency. It includes military-specific factors that factor in the proximity to strategic locations as well as environmental variables like vegetation cover and terrain resolution. With Gradient Boosting algorithms such as XGBoost and LightGBM, the accuracy rate is almost 97%. Such precision levels further enhance threat assessment, better allocation of resources, and around a 30% reduction in the cost and time of conducting demining operations, signifying a strong synergy of human expertise with algorithmic precision for maximal safety and effectiveness in demining.","PeriodicalId":48738,"journal":{"name":"ISPRS International Journal of Geo-Information","volume":"224 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS International Journal of Geo-Information","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/ijgi13070259","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces an intelligent model that combines military expertise with the latest advancements in machine learning (ML) and Geographic Information Systems (GIS) to support humanitarian demining decision-making processes, by predicting mined areas and classifying them by mine type, difficulty and priority of clearance. The model is based on direct input and validation from field decision-makers for their practical applicability and effectiveness, and accurate historical demining data extracted from military databases. With a survey polling the inputs of demining experts, 95% of the responses came with an affirmation of the potential of the model to reduce threats and increase operational efficiency. It includes military-specific factors that factor in the proximity to strategic locations as well as environmental variables like vegetation cover and terrain resolution. With Gradient Boosting algorithms such as XGBoost and LightGBM, the accuracy rate is almost 97%. Such precision levels further enhance threat assessment, better allocation of resources, and around a 30% reduction in the cost and time of conducting demining operations, signifying a strong synergy of human expertise with algorithmic precision for maximal safety and effectiveness in demining.
期刊介绍:
ISPRS International Journal of Geo-Information (ISSN 2220-9964) provides an advanced forum for the science and technology of geographic information. ISPRS International Journal of Geo-Information publishes regular research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
The 2018 IJGI Outstanding Reviewer Award has been launched! This award acknowledge those who have generously dedicated their time to review manuscripts submitted to IJGI. See full details at http://www.mdpi.com/journal/ijgi/awards.