Zecheng Zhang, Christian Moya, Wing Tat Leung, Guang Lin, Hayden Schaeffer
{"title":"Bayesian Deep Operator Learning for Homogenized to Fine-Scale Maps for Multiscale PDE","authors":"Zecheng Zhang, Christian Moya, Wing Tat Leung, Guang Lin, Hayden Schaeffer","doi":"10.1137/23m160342x","DOIUrl":null,"url":null,"abstract":"Multiscale Modeling &Simulation, Volume 22, Issue 3, Page 956-972, September 2024. <br/> Abstract. We present a new framework for computing fine-scale solutions of multiscale partial differential equations (PDEs) using operator learning tools. Obtaining fine-scale solutions of multiscale PDEs can be challenging, but there are many inexpensive computational methods for obtaining coarse-scale solutions. Additionally, in many real-world applications, fine-scale solutions can only be observed at a limited number of locations. In order to obtain approximations or predictions of fine-scale solutions over general regions of interest, we propose to learn the operator mapping from coarse-scale solutions to fine-scale solutions using observations of a limited number of (possible noisy) fine-scale solutions. The approach is to train multi-fidelity homogenization maps using mathematically motivated neural operators. The operator learning framework can efficiently obtain the solution of multiscale PDEs at any arbitrary point, making our proposed framework a mesh-free solver. We verify our results on multiple numerical examples showing that our approach is an efficient mesh-free solver for multiscale PDEs.","PeriodicalId":501053,"journal":{"name":"Multiscale Modeling and Simulation","volume":"204 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/23m160342x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Multiscale Modeling &Simulation, Volume 22, Issue 3, Page 956-972, September 2024. Abstract. We present a new framework for computing fine-scale solutions of multiscale partial differential equations (PDEs) using operator learning tools. Obtaining fine-scale solutions of multiscale PDEs can be challenging, but there are many inexpensive computational methods for obtaining coarse-scale solutions. Additionally, in many real-world applications, fine-scale solutions can only be observed at a limited number of locations. In order to obtain approximations or predictions of fine-scale solutions over general regions of interest, we propose to learn the operator mapping from coarse-scale solutions to fine-scale solutions using observations of a limited number of (possible noisy) fine-scale solutions. The approach is to train multi-fidelity homogenization maps using mathematically motivated neural operators. The operator learning framework can efficiently obtain the solution of multiscale PDEs at any arbitrary point, making our proposed framework a mesh-free solver. We verify our results on multiple numerical examples showing that our approach is an efficient mesh-free solver for multiscale PDEs.