Leveraging Machine Learning for High-Dimensional Option Pricing within the Uncertain Volatility Model

Ludovic Goudenege, Andrea Molent, Antonino Zanette
{"title":"Leveraging Machine Learning for High-Dimensional Option Pricing within the Uncertain Volatility Model","authors":"Ludovic Goudenege, Andrea Molent, Antonino Zanette","doi":"arxiv-2407.13213","DOIUrl":null,"url":null,"abstract":"This paper explores the application of Machine Learning techniques for\npricing high-dimensional options within the framework of the Uncertain\nVolatility Model (UVM). The UVM is a robust framework that accounts for the\ninherent unpredictability of market volatility by setting upper and lower\nbounds on volatility and the correlation among underlying assets. By leveraging\nhistorical data and extreme values of estimated volatilities and correlations,\nthe model establishes a confidence interval for future volatility and\ncorrelations, thus providing a more realistic approach to option pricing. By\nintegrating advanced Machine Learning algorithms, we aim to enhance the\naccuracy and efficiency of option pricing under the UVM, especially when the\noption price depends on a large number of variables, such as in basket or\npath-dependent options. Our approach evolves backward in time, dynamically\nselecting at each time step the most expensive volatility and correlation for\neach market state. Specifically, it identifies the particular values of\nvolatility and correlation that maximize the expected option value at the next\ntime step. This is achieved through the use of Gaussian Process regression, the\ncomputation of expectations via a single step of a multidimensional tree and\nthe Sequential Quadratic Programming optimization algorithm. The numerical\nresults demonstrate that the proposed approach can significantly improve the\nprecision of option pricing and risk management strategies compared with\nmethods already in the literature, particularly in high-dimensional contexts.","PeriodicalId":501294,"journal":{"name":"arXiv - QuantFin - Computational Finance","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.13213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores the application of Machine Learning techniques for pricing high-dimensional options within the framework of the Uncertain Volatility Model (UVM). The UVM is a robust framework that accounts for the inherent unpredictability of market volatility by setting upper and lower bounds on volatility and the correlation among underlying assets. By leveraging historical data and extreme values of estimated volatilities and correlations, the model establishes a confidence interval for future volatility and correlations, thus providing a more realistic approach to option pricing. By integrating advanced Machine Learning algorithms, we aim to enhance the accuracy and efficiency of option pricing under the UVM, especially when the option price depends on a large number of variables, such as in basket or path-dependent options. Our approach evolves backward in time, dynamically selecting at each time step the most expensive volatility and correlation for each market state. Specifically, it identifies the particular values of volatility and correlation that maximize the expected option value at the next time step. This is achieved through the use of Gaussian Process regression, the computation of expectations via a single step of a multidimensional tree and the Sequential Quadratic Programming optimization algorithm. The numerical results demonstrate that the proposed approach can significantly improve the precision of option pricing and risk management strategies compared with methods already in the literature, particularly in high-dimensional contexts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在不确定波动率模型中利用机器学习进行高维期权定价
本文探讨了在不确定波动率模型(UVM)框架内应用机器学习技术为高维期权定价的问题。不确定波动率模型是一个稳健的框架,它通过设置波动率的上限和下限以及标的资产之间的相关性来考虑市场波动率固有的不可预测性。通过利用历史数据和估计波动率和相关性的极端值,该模型建立了未来波动率和相关性的置信区间,从而为期权定价提供了更现实的方法。通过整合先进的机器学习算法,我们旨在提高 UVM 下期权定价的准确性和效率,尤其是当期权价格依赖于大量变量时,如一揽子期权或路径依赖期权。我们的方法在时间上向后发展,在每个时间步动态选择每个市场状态下最昂贵的波动率和相关性。具体来说,它能识别出在下一个时间步最大化期权预期价值的波动率和相关性的特定值。这是通过使用高斯过程回归、多维树的单步预期计算和顺序二次编程优化算法来实现的。数值结果表明,与文献中已有的方法相比,特别是在高维背景下,所提出的方法可以显著提高期权定价和风险管理策略的精确度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A deep primal-dual BSDE method for optimal stopping problems Robust financial calibration: a Bayesian approach for neural SDEs MANA-Net: Mitigating Aggregated Sentiment Homogenization with News Weighting for Enhanced Market Prediction QuantFactor REINFORCE: Mining Steady Formulaic Alpha Factors with Variance-bounded REINFORCE Signature of maturity in cryptocurrency volatility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1