Dispersion of Au entities over Mo2N and MoC for the low-temperature water–gas shift reaction†

IF 4.4 3区 化学 Q2 CHEMISTRY, PHYSICAL Catalysis Science & Technology Pub Date : 2024-08-12 DOI:10.1039/d4cy00489b
{"title":"Dispersion of Au entities over Mo2N and MoC for the low-temperature water–gas shift reaction†","authors":"","doi":"10.1039/d4cy00489b","DOIUrl":null,"url":null,"abstract":"<div><p>Nitridation of an Au/MoO<sub>3</sub> precursor, 8 nm Au particles dispersed over MoO<sub>3</sub> nanobelts, by ammonia at 600 °C resulted in Au flat films of 4–27 nm wide over γ-Mo<sub>2</sub>N, while further carburization with a CH<sub>4</sub>/H<sub>2</sub> mixture at 700 °C converted γ-Mo<sub>2</sub>N to α-MoC and simultaneously dispersed Au flat films into atomic layers and single-atoms. The Au/γ-Mo<sub>2</sub>N catalyst was nearly inert for the low-temperature water–gas shift reaction at 120 °C and it became appreciably active at 200 °C. By contrast, the Au/α-MoC catalyst was readily highly active at 120 °C and further, the specific activity was nearly tenfold at 200 °C. Structure analysis regarding the dispersion of Au entities and the structure properties of γ-Mo<sub>2</sub>N/α-MoC revealed that the support contributed significantly to the catalytic performance, in addition to the active Au species. The lower N vacancies of γ-Mo<sub>2</sub>N favored the dispersion of Au thin layers, but weakened the ability to dissociate H<sub>2</sub>O. Well-crystallized α-MoC anchored Au atomic layers and single-atoms and extended the Au–MoC interface, and thereby greatly facilitated H<sub>2</sub>O dissociation.</p></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2044475324003897","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nitridation of an Au/MoO3 precursor, 8 nm Au particles dispersed over MoO3 nanobelts, by ammonia at 600 °C resulted in Au flat films of 4–27 nm wide over γ-Mo2N, while further carburization with a CH4/H2 mixture at 700 °C converted γ-Mo2N to α-MoC and simultaneously dispersed Au flat films into atomic layers and single-atoms. The Au/γ-Mo2N catalyst was nearly inert for the low-temperature water–gas shift reaction at 120 °C and it became appreciably active at 200 °C. By contrast, the Au/α-MoC catalyst was readily highly active at 120 °C and further, the specific activity was nearly tenfold at 200 °C. Structure analysis regarding the dispersion of Au entities and the structure properties of γ-Mo2N/α-MoC revealed that the support contributed significantly to the catalytic performance, in addition to the active Au species. The lower N vacancies of γ-Mo2N favored the dispersion of Au thin layers, but weakened the ability to dissociate H2O. Well-crystallized α-MoC anchored Au atomic layers and single-atoms and extended the Au–MoC interface, and thereby greatly facilitated H2O dissociation.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金实体在 Mo2N 和 MoC 上的分散,用于低温水-气变换反应
金/MoO3 前驱体(分散在 MoO3 纳米颗粒上的 8 nm 金颗粒)在 600 ℃ 下经氨氮氮化后,在 γ-Mo2N 上形成了 4-27 nm 宽的金平膜,而在 700 ℃ 下用 CH4/H2 混合物进一步渗碳,可将γ-Mo2N 转化为 α-MoC,同时将金平膜分散成原子层和单原子。Au/γ-Mo2N 催化剂在 120 ℃ 的低温水气变换反应中几乎是惰性的,而在 200 ℃ 时则变得明显活跃。相比之下,Au/α-MoC 催化剂在 120 ℃ 时活性很高,在 200 ℃ 时,比活性提高了近 10 倍。对金实体的分散性和 γ-Mo2N/α-MoC 的结构特性进行的结构分析表明,除了活性金物种外,支撑物对催化性能也有重要影响。γ-Mo2N中较低的N空位有利于金薄层的分散,但却削弱了解离H2O的能力。结晶良好的 α-MoC 固定了金原子层和单原子,扩展了 Au-MoC 界面,从而大大促进了 H2O 的解离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
期刊最新文献
Hydrolysis of ammonia borane for green hydrogen production over a Pd/C3N4 nanocatalyst synthesized by electron beam irradiation Back cover Single-step in situ synthesis of bimetallic catalysts via a gas-phase route: the case of PdZn–ZnO The effect of polyunsaturation – insights into the hydroformylation of oleochemicals Exploring the impact of abnormal coordination in macrocyclic N-heterocyclic carbene ligands on bio-inspired iron epoxidation catalysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1