Video anomaly detection with both normal and anomaly memory modules

Liang Zhang, Shifeng Li, Xi Luo, Xiaoru Liu, Ruixuan Zhang
{"title":"Video anomaly detection with both normal and anomaly memory modules","authors":"Liang Zhang, Shifeng Li, Xi Luo, Xiaoru Liu, Ruixuan Zhang","doi":"10.1007/s00371-024-03584-z","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose a novel framework for video anomaly detection that employs dual memory modules for both normal and anomaly patterns. By maintaining separate memory modules, one for normal patterns and one for anomaly patterns, our approach captures a broader range of video data behaviors. By exploring separate memory modules for normal and anomaly patterns, we begin by generating pseudo-anomalies using a temporal pseudo-anomaly synthesizer. This data is then used to train the anomaly memory module, while normal data trains the normal memory module. To distinguish between normal and anomalous data, we introduce a loss function that computes memory loss between the two memory modules. We enhance the memory modules by incorporating entropy loss and a hard shrinkage rectified linear unit (ReLU). Additionally, we integrate skip connections within our model to ensure the memory module captures comprehensive patterns beyond prototypical representations. Extensive experimentation and analysis on various challenging video anomaly datasets validate the effectiveness of our approach in detecting anomalies. The code for our method is available at https://github.com/SVIL2024/Pseudo-Anomaly-MemAE.</p>","PeriodicalId":501186,"journal":{"name":"The Visual Computer","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Visual Computer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00371-024-03584-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a novel framework for video anomaly detection that employs dual memory modules for both normal and anomaly patterns. By maintaining separate memory modules, one for normal patterns and one for anomaly patterns, our approach captures a broader range of video data behaviors. By exploring separate memory modules for normal and anomaly patterns, we begin by generating pseudo-anomalies using a temporal pseudo-anomaly synthesizer. This data is then used to train the anomaly memory module, while normal data trains the normal memory module. To distinguish between normal and anomalous data, we introduce a loss function that computes memory loss between the two memory modules. We enhance the memory modules by incorporating entropy loss and a hard shrinkage rectified linear unit (ReLU). Additionally, we integrate skip connections within our model to ensure the memory module captures comprehensive patterns beyond prototypical representations. Extensive experimentation and analysis on various challenging video anomaly datasets validate the effectiveness of our approach in detecting anomalies. The code for our method is available at https://github.com/SVIL2024/Pseudo-Anomaly-MemAE.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过正常和异常内存模块进行视频异常检测
在本文中,我们提出了一种新颖的视频异常检测框架,该框架采用双内存模块来检测正常模式和异常模式。通过分别维护正常模式和异常模式的内存模块,我们的方法可以捕捉到更广泛的视频数据行为。通过探索正常模式和异常模式的独立存储模块,我们首先使用时态伪异常合成器生成伪异常。然后利用这些数据训练异常记忆模块,而正常数据则训练正常记忆模块。为了区分正常数据和异常数据,我们引入了一个损失函数,用于计算两个记忆模块之间的记忆损失。我们通过整合熵损失和硬收缩矫正线性单元(ReLU)来增强记忆模块。此外,我们还在模型中整合了跳转连接,以确保记忆模块能够捕捉原型表征之外的综合模式。在各种具有挑战性的视频异常数据集上进行的大量实验和分析验证了我们的方法在检测异常方面的有效性。我们方法的代码可在 https://github.com/SVIL2024/Pseudo-Anomaly-MemAE 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advanced deepfake detection with enhanced Resnet-18 and multilayer CNN max pooling Video-driven musical composition using large language model with memory-augmented state space 3D human pose estimation using spatiotemporal hypergraphs and its public benchmark on opera videos Topological structure extraction for computing surface–surface intersection curves Lunet: an enhanced upsampling fusion network with efficient self-attention for semantic segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1