Low latency carbon budget analysis reveals a large decline of the land carbon sink in 2023

Piyu Ke, Philippe Ciais, Stephen Sitch, Wei Li, Ana Bastos, Zhu Liu, Yidi Xu, Xiaofan Gui, Jiang Bian, Daniel S Goll, Yi Xi, Wanjing Li, Michael O'Sullivan, Jeffeson Goncalves de Souza, Pierre Friedlingstein, Frederic Chevallier
{"title":"Low latency carbon budget analysis reveals a large decline of the land carbon sink in 2023","authors":"Piyu Ke, Philippe Ciais, Stephen Sitch, Wei Li, Ana Bastos, Zhu Liu, Yidi Xu, Xiaofan Gui, Jiang Bian, Daniel S Goll, Yi Xi, Wanjing Li, Michael O'Sullivan, Jeffeson Goncalves de Souza, Pierre Friedlingstein, Frederic Chevallier","doi":"arxiv-2407.12447","DOIUrl":null,"url":null,"abstract":"In 2023, the CO2 growth rate was 3.37 +/- 0.11 ppm at Mauna Loa, 86% above\nthe previous year, and hitting a record high since observations began in 1958,\nwhile global fossil fuel CO2 emissions only increased by 0.6 +/- 0.5%. This\nimplies an unprecedented weakening of land and ocean sinks, and raises the\nquestion of where and why this reduction happened. Here we show a global net\nland CO2 sink of 0.44 +/- 0.21 GtC yr-1, the weakest since 2003. We used\ndynamic global vegetation models, satellites fire emissions, an atmospheric\ninversion based on OCO-2 measurements, and emulators of ocean biogeochemical\nand data driven models to deliver a fast-track carbon budget in 2023. Those\nmodels ensured consistency with previous carbon budgets. Regional flux\nanomalies from 2015-2022 are consistent between top-down and bottom-up\napproaches, with the largest abnormal carbon loss in the Amazon during the\ndrought in the second half of 2023 (0.31 +/- 0.19 GtC yr-1), extreme fire\nemissions of 0.58 +/- 0.10 GtC yr-1 in Canada and a loss in South-East Asia\n(0.13 +/- 0.12 GtC yr-1). Since 2015, land CO2 uptake north of 20 degree N\ndeclined by half to 1.13 +/- 0.24 GtC yr-1 in 2023. Meanwhile, the tropics\nrecovered from the 2015-16 El Nino carbon loss, gained carbon during the La\nNina years (2020-2023), then switched to a carbon loss during the 2023 El Nino\n(0.56 +/- 0.23 GtC yr-1). The ocean sink was stronger than normal in the\nequatorial eastern Pacific due to reduced upwelling from La Nina's retreat in\nearly 2023 and the development of El Nino later. Land regions exposed to\nextreme heat in 2023 contributed a gross carbon loss of 1.73 GtC yr-1,\nindicating that record warming in 2023 had a strong negative impact on the\ncapacity of terrestrial ecosystems to mitigate climate change.","PeriodicalId":501166,"journal":{"name":"arXiv - PHYS - Atmospheric and Oceanic Physics","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atmospheric and Oceanic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.12447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In 2023, the CO2 growth rate was 3.37 +/- 0.11 ppm at Mauna Loa, 86% above the previous year, and hitting a record high since observations began in 1958, while global fossil fuel CO2 emissions only increased by 0.6 +/- 0.5%. This implies an unprecedented weakening of land and ocean sinks, and raises the question of where and why this reduction happened. Here we show a global net land CO2 sink of 0.44 +/- 0.21 GtC yr-1, the weakest since 2003. We used dynamic global vegetation models, satellites fire emissions, an atmospheric inversion based on OCO-2 measurements, and emulators of ocean biogeochemical and data driven models to deliver a fast-track carbon budget in 2023. Those models ensured consistency with previous carbon budgets. Regional flux anomalies from 2015-2022 are consistent between top-down and bottom-up approaches, with the largest abnormal carbon loss in the Amazon during the drought in the second half of 2023 (0.31 +/- 0.19 GtC yr-1), extreme fire emissions of 0.58 +/- 0.10 GtC yr-1 in Canada and a loss in South-East Asia (0.13 +/- 0.12 GtC yr-1). Since 2015, land CO2 uptake north of 20 degree N declined by half to 1.13 +/- 0.24 GtC yr-1 in 2023. Meanwhile, the tropics recovered from the 2015-16 El Nino carbon loss, gained carbon during the La Nina years (2020-2023), then switched to a carbon loss during the 2023 El Nino (0.56 +/- 0.23 GtC yr-1). The ocean sink was stronger than normal in the equatorial eastern Pacific due to reduced upwelling from La Nina's retreat in early 2023 and the development of El Nino later. Land regions exposed to extreme heat in 2023 contributed a gross carbon loss of 1.73 GtC yr-1, indicating that record warming in 2023 had a strong negative impact on the capacity of terrestrial ecosystems to mitigate climate change.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低延迟碳预算分析显示 2023 年陆地碳汇将大幅下降
2023 年,莫纳罗亚火山的二氧化碳增长率为 3.37 +/- 0.11 ppm,比上一年高出 86%,创下自 1958 年开始观测以来的新高,而全球化石燃料二氧化碳排放量仅增加了 0.6 +/- 0.5%。这表明陆地和海洋的吸收汇出现了前所未有的减弱,并提出了这种减弱发生在哪里以及原因何在的问题。在这里,我们展示了全球陆地二氧化碳净汇为 0.44 +/- 0.21 GtC yr-1,这是自 2003 年以来最弱的一次。我们使用了全球植被动态模型、卫星火灾排放、基于 OCO-2 测量的大气反演以及海洋生物地球化学和数据驱动模型的模拟器来提供 2023 年的快速碳预算。这些模型确保了与以往碳预算的一致性。2015-2022年的区域通量异常与自上而下和自下而上的方法一致,2023年下半年干旱期间亚马逊地区的异常碳损失最大(0.31 +/- 0.19 GtC yr-1),加拿大的极端火灾排放为0.58 +/- 0.10 GtC yr-1,东南亚的损失为0.13 +/- 0.12 GtC yr-1。自 2015 年以来,北纬 20 度以北的陆地二氧化碳吸收量下降了一半,到 2023 年降至 1.13 +/- 0.24 GtC yr-1。与此同时,热带地区从 2015-16 年厄尔尼诺碳损失中恢复过来,在拉尼娜年(2020-2023 年)获得碳,然后在 2023 年厄尔尼诺期间转为碳损失(0.56 +/- 0.23 GtC yr-1)。由于 2023 年初拉尼娜现象的消退和随后厄尔尼诺现象的发展导致上升流减少,赤道东太平洋的海洋碳汇比正常情况下更强。2023 年暴露在极端高温下的陆地地区造成了 1.73 GtC yr-1 的总碳损失,表明 2023 年创纪录的升温对陆地生态系统减缓气候变化的能力产生了强烈的负面影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Harnessing AI data-driven global weather models for climate attribution: An analysis of the 2017 Oroville Dam extreme atmospheric river Super Resolution On Global Weather Forecasts Can Transfer Learning be Used to Identify Tropical State-Dependent Bias Relevant to Midlatitude Subseasonal Predictability? Using Generative Models to Produce Realistic Populations of the United Kingdom Windstorms Integrated nowcasting of convective precipitation with Transformer-based models using multi-source data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1