Zero-Shot Video Moment Retrieval With Angular Reconstructive Text Embeddings

IF 8.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Multimedia Pub Date : 2024-07-19 DOI:10.1109/TMM.2024.3396272
Xun Jiang;Xing Xu;Zailei Zhou;Yang Yang;Fumin Shen;Heng Tao Shen
{"title":"Zero-Shot Video Moment Retrieval With Angular Reconstructive Text Embeddings","authors":"Xun Jiang;Xing Xu;Zailei Zhou;Yang Yang;Fumin Shen;Heng Tao Shen","doi":"10.1109/TMM.2024.3396272","DOIUrl":null,"url":null,"abstract":"Given an untrimmed video and a text query, Video Moment Retrieval (VMR) aims at retrieving a specific moment where the video content is semantically related to the text query. Conventional VMR methods rely on video-text paired data or specific temporal annotations for each target event. However, the subjectivity and time-consuming nature of the labeling process limit their practicality in multimedia applications. To address this issue, recently researchers proposed a Zero-Shot Learning setting for VMR (ZS-VMR) that trains VMR models without manual supervision signals, thereby reducing the data cost. In this paper, we tackle the challenging ZS-VMR problem with \n<italic>Angular Reconstructive Text embeddings (ART)</i>\n, generalizing the image-text matching pre-trained model CLIP to the VMR task. Specifically, assuming that visual embeddings are close to their semantically related text embeddings in angular space, our ART method generates pseudo-text embeddings of video event proposals through the hypersphere of CLIP. Moreover, to address the temporal nature of videos, we also design local multimodal fusion learning to narrow the gaps between image-text matching and video-text matching. Our experimental results on two widely used VMR benchmarks, Charades-STA and ActivityNet-Captions, show that our method outperforms current state-of-the-art ZS-VMR methods. It also achieves competitive performance compared to recent weakly-supervised VMR methods.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"26 ","pages":"9657-9670"},"PeriodicalIF":8.4000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10605104/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Given an untrimmed video and a text query, Video Moment Retrieval (VMR) aims at retrieving a specific moment where the video content is semantically related to the text query. Conventional VMR methods rely on video-text paired data or specific temporal annotations for each target event. However, the subjectivity and time-consuming nature of the labeling process limit their practicality in multimedia applications. To address this issue, recently researchers proposed a Zero-Shot Learning setting for VMR (ZS-VMR) that trains VMR models without manual supervision signals, thereby reducing the data cost. In this paper, we tackle the challenging ZS-VMR problem with Angular Reconstructive Text embeddings (ART) , generalizing the image-text matching pre-trained model CLIP to the VMR task. Specifically, assuming that visual embeddings are close to their semantically related text embeddings in angular space, our ART method generates pseudo-text embeddings of video event proposals through the hypersphere of CLIP. Moreover, to address the temporal nature of videos, we also design local multimodal fusion learning to narrow the gaps between image-text matching and video-text matching. Our experimental results on two widely used VMR benchmarks, Charades-STA and ActivityNet-Captions, show that our method outperforms current state-of-the-art ZS-VMR methods. It also achieves competitive performance compared to recent weakly-supervised VMR methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用角度重构文本嵌入检索零镜头视频瞬间
给定一段未经剪辑的视频和一个文本查询,视频时刻检索(VMR)旨在检索视频内容与文本查询语义相关的特定时刻。传统的 VMR 方法依赖于视频-文本配对数据或每个目标事件的特定时间注释。然而,标注过程的主观性和耗时性限制了这些方法在多媒体应用中的实用性。为了解决这个问题,最近有研究人员提出了一种用于 VMR 的零镜头学习设置(Zero-Shot Learning setting for VMR,ZS-VMR),它可以在没有人工监督信号的情况下训练 VMR 模型,从而降低数据成本。在本文中,我们利用角度重构文本嵌入(ART)解决了具有挑战性的 ZS-VMR 问题,将图像-文本匹配预训练模型 CLIP 推广到了 VMR 任务中。具体来说,我们的 ART 方法假定视觉嵌入与其语义相关的文本嵌入在角度空间上很接近,通过 CLIP 的超球生成视频事件提案的伪文本嵌入。此外,针对视频的时间特性,我们还设计了局部多模态融合学习,以缩小图像-文本匹配和视频-文本匹配之间的差距。我们在两个广泛使用的 VMR 基准(Charades-STA 和 ActivityNet-Captions)上的实验结果表明,我们的方法优于目前最先进的 ZS-VMR 方法。与最新的弱监督 VMR 方法相比,我们的方法也取得了具有竞争力的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
期刊最新文献
Improving Network Interpretability via Explanation Consistency Evaluation Deep Mutual Distillation for Unsupervised Domain Adaptation Person Re-identification Collaborative License Plate Recognition via Association Enhancement Network With Auxiliary Learning and a Unified Benchmark VLDadaptor: Domain Adaptive Object Detection With Vision-Language Model Distillation Camera-Incremental Object Re-Identification With Identity Knowledge Evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1