A latent class selection model for categorical response variables with nonignorably missing data

IF 0.3 4区 数学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Statistics and Its Interface Pub Date : 2024-07-19 DOI:10.4310/22-sii753
Jung Wun Lee, Ofer Harel
{"title":"A latent class selection model for categorical response variables with nonignorably missing data","authors":"Jung Wun Lee, Ofer Harel","doi":"10.4310/22-sii753","DOIUrl":null,"url":null,"abstract":"We develop a new selection model for nonignorable missing values in multivariate categorical response variables by assuming that the response variables and their missingness can be summarized into categorical latent variables. Our proposed model contains two categorical latent variables. One latent variable summarizes the response patterns while the other describes the response variables’ missingness. Our selection model is an alternative method to other incomplete data methods when the incomplete data mechanism is nonignorable. We implement simulation studies to evaluate the performance of the proposed method and analyze the General Social Survey 2018 data to demonstrate its performance.","PeriodicalId":51230,"journal":{"name":"Statistics and Its Interface","volume":"56 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Its Interface","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/22-sii753","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a new selection model for nonignorable missing values in multivariate categorical response variables by assuming that the response variables and their missingness can be summarized into categorical latent variables. Our proposed model contains two categorical latent variables. One latent variable summarizes the response patterns while the other describes the response variables’ missingness. Our selection model is an alternative method to other incomplete data methods when the incomplete data mechanism is nonignorable. We implement simulation studies to evaluate the performance of the proposed method and analyze the General Social Survey 2018 data to demonstrate its performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有非明显缺失数据的分类响应变量的潜类选择模型
我们假定响应变量及其缺失性可以归纳为分类潜变量,从而为多元分类响应变量中的不可忽略缺失值建立了一个新的选择模型。我们提出的模型包含两个分类潜变量。一个潜变量概括了响应模式,另一个则描述了响应变量的缺失情况。当不完全数据机制不可忽略时,我们的选择模型是其他不完全数据方法的替代方法。我们实施了模拟研究来评估所提出方法的性能,并分析了 2018 年一般社会调查数据来证明其性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistics and Its Interface
Statistics and Its Interface MATHEMATICAL & COMPUTATIONAL BIOLOGY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
0.90
自引率
12.50%
发文量
45
审稿时长
6 months
期刊介绍: Exploring the interface between the field of statistics and other disciplines, including but not limited to: biomedical sciences, geosciences, computer sciences, engineering, and social and behavioral sciences. Publishes high-quality articles in broad areas of statistical science, emphasizing substantive problems, sound statistical models and methods, clear and efficient computational algorithms, and insightful discussions of the motivating problems.
期刊最新文献
Estimating extreme value index by subsampling for massive datasets with heavy-tailed distributions Default Bayesian testing for the zero-inflated Poisson distribution A consistent specification test for functional linear quantile regression models Variable selection and estimation for high-dimensional partially linear spatial autoregressive models with measurement errors A double regression method for graphical modeling of high-dimensional nonlinear and non-Gaussian data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1