Evaluating Large Language Models for Anxiety and Depression Classification using Counseling and Psychotherapy Transcripts

Junwei Sun, Siqi Ma, Yiran Fan, Peter Washington
{"title":"Evaluating Large Language Models for Anxiety and Depression Classification using Counseling and Psychotherapy Transcripts","authors":"Junwei Sun, Siqi Ma, Yiran Fan, Peter Washington","doi":"arxiv-2407.13228","DOIUrl":null,"url":null,"abstract":"We aim to evaluate the efficacy of traditional machine learning and large\nlanguage models (LLMs) in classifying anxiety and depression from long\nconversational transcripts. We fine-tune both established transformer models\n(BERT, RoBERTa, Longformer) and more recent large models (Mistral-7B), trained\na Support Vector Machine with feature engineering, and assessed GPT models\nthrough prompting. We observe that state-of-the-art models fail to enhance\nclassification outcomes compared to traditional machine learning methods.","PeriodicalId":501168,"journal":{"name":"arXiv - CS - Emerging Technologies","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.13228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We aim to evaluate the efficacy of traditional machine learning and large language models (LLMs) in classifying anxiety and depression from long conversational transcripts. We fine-tune both established transformer models (BERT, RoBERTa, Longformer) and more recent large models (Mistral-7B), trained a Support Vector Machine with feature engineering, and assessed GPT models through prompting. We observe that state-of-the-art models fail to enhance classification outcomes compared to traditional machine learning methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用咨询和心理治疗记录评估焦虑和抑郁分类的大型语言模型
我们的目的是评估传统机器学习和大型语言模型(LLMs)在从长对话记录中对焦虑和抑郁进行分类方面的功效。我们对已建立的转换器模型(BERT、RoBERTa、Longformer)和最新的大型模型(Mistral-7B)进行了微调,通过特征工程训练了支持向量机,并通过提示评估了 GPT 模型。我们发现,与传统的机器学习方法相比,最先进的模型无法提高分类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pennsieve - A Collaborative Platform for Translational Neuroscience and Beyond Analysing Attacks on Blockchain Systems in a Layer-based Approach Exploring Utility in a Real-World Warehouse Optimization Problem: Formulation Based on Quantun Annealers and Preliminary Results High Definition Map Mapping and Update: A General Overview and Future Directions Detection Made Easy: Potentials of Large Language Models for Solidity Vulnerabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1