Nisha, Sahil Kohli, Snigdha Singh, Neera Sharma and Ramesh Chandra
{"title":"Fe3O4/PANI/CuI as a sustainable heterogeneous nanocatalyst for A3 coupling†","authors":"Nisha, Sahil Kohli, Snigdha Singh, Neera Sharma and Ramesh Chandra","doi":"10.1039/D4NA00448E","DOIUrl":null,"url":null,"abstract":"<p >The prepared copper iodide nanoparticles were impregnated on the support of ferrite nanoparticles functionalized with polyaniline, resulting in a magnetically recoverable heterogeneous nanocomposite. The activity of the prepared nanocomposite was investigated in the synthesis of propargylamine derivatives <em>via</em> A<small><sup>3</sup></small> coupling under mild conditions. Techniques such as FESEM, EDAX, XRD, XPS, TEM, BET and FTIR were used to characterize the effective and unique heterogeneous Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>/PANI/CuI nanocomposite developed in this work. This method used in the current study has several advantages, including a short reaction time, neat conditions, good product yield, ideal green matrices values, reusability for up to seven cycles, and magnetic retrievability.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/na/d4na00448e?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/na/d4na00448e","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The prepared copper iodide nanoparticles were impregnated on the support of ferrite nanoparticles functionalized with polyaniline, resulting in a magnetically recoverable heterogeneous nanocomposite. The activity of the prepared nanocomposite was investigated in the synthesis of propargylamine derivatives via A3 coupling under mild conditions. Techniques such as FESEM, EDAX, XRD, XPS, TEM, BET and FTIR were used to characterize the effective and unique heterogeneous Fe3O4/PANI/CuI nanocomposite developed in this work. This method used in the current study has several advantages, including a short reaction time, neat conditions, good product yield, ideal green matrices values, reusability for up to seven cycles, and magnetic retrievability.