A dynamic target tracking framework of UGV for UAV recovery under random disturbances

Bin Li, Shoukun Wang, Jinge Si, Yongkang Xu, Liang Wang, Chencheng Deng, Junzheng Wang, Zhi Liu
{"title":"A dynamic target tracking framework of UGV for UAV recovery under random disturbances","authors":"Bin Li, Shoukun Wang, Jinge Si, Yongkang Xu, Liang Wang, Chencheng Deng, Junzheng Wang, Zhi Liu","doi":"10.1108/ir-01-2024-0004","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>Dynamically tracking the target by unmanned ground vehicles (UGVs) plays a critical role in mobile drone recovery. This study aims to solve this challenge under diverse random disturbances, proposing a dynamic target tracking framework for UGVs based on target state estimation, trajectory prediction, and UGV control.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>To mitigate the adverse effects of noise contamination in target detection, the authors use the extended Kalman filter (EKF) to improve the accuracy of locating unmanned aerial vehicles (UAVs). Furthermore, a robust motion prediction algorithm based on polynomial fitting is developed to reduce the impact of trajectory jitter caused by crosswinds, enhancing the stability of drone trajectory prediction. Regarding UGV control, a dynamic vehicle model featuring independent front and rear wheel steering is derived. Additionally, a linear time-varying model predictive control algorithm is proposed to minimize tracking errors for the UGV.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>To validate the feasibility of the framework, the algorithms were deployed on the designed UGV. Experimental results demonstrate the effectiveness of the proposed dynamic tracking algorithm of UGV under random disturbances.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This paper proposes a tracking framework of UGV based on target state estimation, trajectory prediction and UGV predictive control, enabling the system to achieve dynamic tracking to the UAV under multiple disturbance conditions.</p><!--/ Abstract__block -->","PeriodicalId":501389,"journal":{"name":"Industrial Robot","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Robot","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ir-01-2024-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

Dynamically tracking the target by unmanned ground vehicles (UGVs) plays a critical role in mobile drone recovery. This study aims to solve this challenge under diverse random disturbances, proposing a dynamic target tracking framework for UGVs based on target state estimation, trajectory prediction, and UGV control.

Design/methodology/approach

To mitigate the adverse effects of noise contamination in target detection, the authors use the extended Kalman filter (EKF) to improve the accuracy of locating unmanned aerial vehicles (UAVs). Furthermore, a robust motion prediction algorithm based on polynomial fitting is developed to reduce the impact of trajectory jitter caused by crosswinds, enhancing the stability of drone trajectory prediction. Regarding UGV control, a dynamic vehicle model featuring independent front and rear wheel steering is derived. Additionally, a linear time-varying model predictive control algorithm is proposed to minimize tracking errors for the UGV.

Findings

To validate the feasibility of the framework, the algorithms were deployed on the designed UGV. Experimental results demonstrate the effectiveness of the proposed dynamic tracking algorithm of UGV under random disturbances.

Originality/value

This paper proposes a tracking framework of UGV based on target state estimation, trajectory prediction and UGV predictive control, enabling the system to achieve dynamic tracking to the UAV under multiple disturbance conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机扰动下无人机恢复的 UGV 动态目标跟踪框架
目的无人地面飞行器(UGV)对目标的动态跟踪在移动无人机回收中起着至关重要的作用。为了减轻噪声污染对目标检测的不利影响,作者使用扩展卡尔曼滤波器(EKF)来提高无人飞行器(UAV)的定位精度。此外,作者还开发了一种基于多项式拟合的鲁棒运动预测算法,以减少横风造成的轨迹抖动影响,提高无人机轨迹预测的稳定性。在 UGV 控制方面,推导出了具有独立前后轮转向功能的动态飞行器模型。为了验证该框架的可行性,在设计的 UGV 上部署了这些算法。实验结果表明,所提出的 UGV 动态跟踪算法在随机干扰条件下非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model optimization and acceleration method based on meta-learning and model pruning for laser vision weld tracking system High-performance foot trajectory tracking control of hydraulic legged robots based on fixed-time disturbance observers Design of a multi-manipulator robot for relieving welding residual stress An online error compensation strategy for hybrid robot based on grating feedback YLS-SLAM: a real-time dynamic visual SLAM based on semantic segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1