{"title":"Study on the Oxygen Diffusion Capacity of Black Zirconia by Molecular Dynamic Method","authors":"Fugong Qi, Qing Liu, Jiyu Zhou, Xiangguang Kong, Pengjie Wang, Haimin Ding","doi":"10.1007/s11669-024-01134-7","DOIUrl":null,"url":null,"abstract":"<div><p>Improving the oxygen diffusion capacity of solid electrolyte material is an important goal of researchers in recent decades. For this purpose, the blackening of zirconia was considered as a new strategy to enhance its oxygen diffusion capacity. We comparatively investigated the oxygen transport properties of white (YSZ, yttria stabilized zirconia) and black (ZSZ, Zr<sup>3+</sup> stabilized zirconia) zirconia by molecular dynamics simulation. The simulation results show that the ZSZ has the same oxygen diffusion mechanism as YSZ. Furthermore, the ZSZ has a much better oxygen diffusion capacity than YSZ, which is confirmed by the lower minimum oxygen diffusion activation energy of ZSZ (0.37 eV) than that of YSZ (0.46 eV). The different oxygen diffusion capacity between YSZ and ZSZ is attributed to their crystal structure difference. The Zr<sup>3+</sup> ionic radius is much closer to that of Zr<sup>4+</sup> than that of Y<sup>3+</sup>, and it induces smaller lattice distortion in stabilized zirconia to impose a minimal steric blocking effect on the oxygen diffusion process. Therefore, the Zr<sup>3+</sup> is preferred over Y<sup>3+</sup>to enhance the oxygen diffusion capacity of stabilized zirconia and the black YSZ co-doped by Y<sup>3+</sup> and Zr<sup>3+</sup> is proven to be a promising solid electrolyte material with a better oxygen diffusion capacity than YSZ.</p></div>","PeriodicalId":657,"journal":{"name":"Journal of Phase Equilibria and Diffusion","volume":"45 4","pages":"779 - 789"},"PeriodicalIF":1.5000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Phase Equilibria and Diffusion","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11669-024-01134-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Improving the oxygen diffusion capacity of solid electrolyte material is an important goal of researchers in recent decades. For this purpose, the blackening of zirconia was considered as a new strategy to enhance its oxygen diffusion capacity. We comparatively investigated the oxygen transport properties of white (YSZ, yttria stabilized zirconia) and black (ZSZ, Zr3+ stabilized zirconia) zirconia by molecular dynamics simulation. The simulation results show that the ZSZ has the same oxygen diffusion mechanism as YSZ. Furthermore, the ZSZ has a much better oxygen diffusion capacity than YSZ, which is confirmed by the lower minimum oxygen diffusion activation energy of ZSZ (0.37 eV) than that of YSZ (0.46 eV). The different oxygen diffusion capacity between YSZ and ZSZ is attributed to their crystal structure difference. The Zr3+ ionic radius is much closer to that of Zr4+ than that of Y3+, and it induces smaller lattice distortion in stabilized zirconia to impose a minimal steric blocking effect on the oxygen diffusion process. Therefore, the Zr3+ is preferred over Y3+to enhance the oxygen diffusion capacity of stabilized zirconia and the black YSZ co-doped by Y3+ and Zr3+ is proven to be a promising solid electrolyte material with a better oxygen diffusion capacity than YSZ.
期刊介绍:
The most trusted journal for phase equilibria and thermodynamic research, ASM International''s Journal of Phase Equilibria and Diffusion features critical phase diagram evaluations on scientifically and industrially important alloy systems, authored by international experts.
The Journal of Phase Equilibria and Diffusion is critically reviewed and contains basic and applied research results, a survey of current literature and other pertinent articles. The journal covers the significance of diagrams as well as new research techniques, equipment, data evaluation, nomenclature, presentation and other aspects of phase diagram preparation and use.
Content includes information on phenomena such as kinetic control of equilibrium, coherency effects, impurity effects, and thermodynamic and crystallographic characteristics. The journal updates systems previously published in the Bulletin of Alloy Phase Diagrams as new data are discovered.