DFT Study on Retigerane-Type Sesterterpenoid Biosynthesis: Initial Conformation of GFPP Regulates Biosynthetic Pathway, Ring-Construction Order and Stereochemistry

JACS Au Pub Date : 2024-07-19 DOI:10.1021/jacsau.4c00313
Yuichiro Watanabe, Takahiro Hashishin, Hajime Sato, Taro Matsuyama, Masaya Nakajima, Jun-ichi Haruta, Masanobu Uchiyama
{"title":"DFT Study on Retigerane-Type Sesterterpenoid Biosynthesis: Initial Conformation of GFPP Regulates Biosynthetic Pathway, Ring-Construction Order and Stereochemistry","authors":"Yuichiro Watanabe, Takahiro Hashishin, Hajime Sato, Taro Matsuyama, Masaya Nakajima, Jun-ichi Haruta, Masanobu Uchiyama","doi":"10.1021/jacsau.4c00313","DOIUrl":null,"url":null,"abstract":"Retigerane-type sesterterpenoids, which feature a unique 5/6/5/5/5 fused pentacyclic structure with an angular-type triquinane moiety, are biosynthesized via successive carbocation-mediated reactions triggered by terpene cyclases. However, the precise biosynthetic pathways/mechanisms, wherein steric inversion of the carbon skeleton occurs at least once, remain elusive. Two plausible reaction pathways have been proposed, which differ in the order of ring cyclization: A → B/C → D/E-ring(s) (Route 1) and A → E → B → C/D-ring(s) (Route 2). Since the reaction intermediates of these complicated domino-type reaction sequences are experimentally inaccessible, we employed comprehensive density functional theory (DFT) calculations to evaluate these routes. The results indicate that retigeranin biosynthesis proceeds via Route 2 involving a multistep carbocation cascade, in which the order of ring cyclization (A → E → B → C/D) is the key to constructing the angular 5/5/5 triquinane structure with the correct stereochemistry at C3. The result also suggests that slight differences in the initial conformation have a significant effect on the order of cyclization and steric inversion. The computed pathway/mechanism also provides a rational basis for the formation of various related terpenes/terpenoids.","PeriodicalId":14799,"journal":{"name":"JACS Au","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/jacsau.4c00313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Retigerane-type sesterterpenoids, which feature a unique 5/6/5/5/5 fused pentacyclic structure with an angular-type triquinane moiety, are biosynthesized via successive carbocation-mediated reactions triggered by terpene cyclases. However, the precise biosynthetic pathways/mechanisms, wherein steric inversion of the carbon skeleton occurs at least once, remain elusive. Two plausible reaction pathways have been proposed, which differ in the order of ring cyclization: A → B/C → D/E-ring(s) (Route 1) and A → E → B → C/D-ring(s) (Route 2). Since the reaction intermediates of these complicated domino-type reaction sequences are experimentally inaccessible, we employed comprehensive density functional theory (DFT) calculations to evaluate these routes. The results indicate that retigeranin biosynthesis proceeds via Route 2 involving a multistep carbocation cascade, in which the order of ring cyclization (A → E → B → C/D) is the key to constructing the angular 5/5/5 triquinane structure with the correct stereochemistry at C3. The result also suggests that slight differences in the initial conformation have a significant effect on the order of cyclization and steric inversion. The computed pathway/mechanism also provides a rational basis for the formation of various related terpenes/terpenoids.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
芸苔素类酯萜生物合成的 DFT 研究:GFPP 的初始构象调节生物合成途径、环结构顺序和立体化学
芸苔素类酯萜类化合物具有独特的 5/6/5/5/5 融合五环结构和角型三喹啉分子,通过萜烯环化酶引发的连续碳代反应进行生物合成。然而,碳骨架至少发生一次立体反转的精确生物合成途径/机制仍然难以确定。人们提出了两种可信的反应途径,它们在环化顺序上有所不同:A → B/C → D/E 环(路线 1)和 A → E → B → C/D 环(路线 2)。由于这些复杂的多米诺型反应序列的反应中间体无法通过实验获得,我们采用了全面的密度泛函理论(DFT)计算来评估这些路线。结果表明,瑞格素的生物合成是通过路线 2 进行的,其中涉及一个多步骤的碳位级联反应,环的环化顺序(A → E → B → C/D)是构建具有正确 C3 立体化学结构的角 5/5/5 三喹啉结构的关键。该结果还表明,初始构象的细微差别对环化和立体反转的顺序有显著影响。计算出的途径/机制还为各种相关萜类/三萜类化合物的形成提供了合理的依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Signaling Mechanism of Cuproptosis Activating cGAS-STING Immune Pathway Decoupling Electrolytic Water Splitting by an Oxygen-Mediating Process N2 Dissociation vs Reversible 1,2-Methyl Migration in PCNHCP Cobalt(I) Complexes in the Stereoselective Isomerization (E/Z) of Allyl Ethers Selectivity of Complex Coacervation in Multiprotein Mixtures Unleashing the Potential: High Responsivity at Room Temperature of Halide Perovskite-Based Short-Wave Infrared Detectors with Ultrabroad Bandwidth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1