The VoicePrivacy 2022 Challenge: Progress and Perspectives in Voice Anonymisation

IF 4.1 2区 计算机科学 Q1 ACOUSTICS IEEE/ACM Transactions on Audio, Speech, and Language Processing Pub Date : 2024-07-18 DOI:10.1109/TASLP.2024.3430530
Michele Panariello;Natalia Tomashenko;Xin Wang;Xiaoxiao Miao;Pierre Champion;Hubert Nourtel;Massimiliano Todisco;Nicholas Evans;Emmanuel Vincent;Junichi Yamagishi
{"title":"The VoicePrivacy 2022 Challenge: Progress and Perspectives in Voice Anonymisation","authors":"Michele Panariello;Natalia Tomashenko;Xin Wang;Xiaoxiao Miao;Pierre Champion;Hubert Nourtel;Massimiliano Todisco;Nicholas Evans;Emmanuel Vincent;Junichi Yamagishi","doi":"10.1109/TASLP.2024.3430530","DOIUrl":null,"url":null,"abstract":"The VoicePrivacy Challenge promotes the development of voice anonymisation solutions for speech technology. In this paper we present a systematic overview and analysis of the second edition held in 2022. We describe the voice anonymisation task and datasets used for system development and evaluation, present the different attack models used for evaluation, and the associated objective and subjective metrics. We describe three anonymisation baselines, provide a summary description of the anonymisation systems developed by challenge participants, and report objective and subjective evaluation results for all. In addition, we describe post-evaluation analyses and a summary of related work reported in the open literature. Results show that solutions based on voice conversion better preserve utility, that an alternative which combines automatic speech recognition with synthesis achieves greater privacy, and that a privacy-utility trade-off remains inherent to current anonymisation solutions. Finally, we present our ideas and priorities for future VoicePrivacy Challenge editions.","PeriodicalId":13332,"journal":{"name":"IEEE/ACM Transactions on Audio, Speech, and Language Processing","volume":"32 ","pages":"3477-3491"},"PeriodicalIF":4.1000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Audio, Speech, and Language Processing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10603395/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The VoicePrivacy Challenge promotes the development of voice anonymisation solutions for speech technology. In this paper we present a systematic overview and analysis of the second edition held in 2022. We describe the voice anonymisation task and datasets used for system development and evaluation, present the different attack models used for evaluation, and the associated objective and subjective metrics. We describe three anonymisation baselines, provide a summary description of the anonymisation systems developed by challenge participants, and report objective and subjective evaluation results for all. In addition, we describe post-evaluation analyses and a summary of related work reported in the open literature. Results show that solutions based on voice conversion better preserve utility, that an alternative which combines automatic speech recognition with synthesis achieves greater privacy, and that a privacy-utility trade-off remains inherent to current anonymisation solutions. Finally, we present our ideas and priorities for future VoicePrivacy Challenge editions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
语音隐私 2022 年挑战:语音匿名化的进展与展望
语音隐私挑战赛(VoicePrivacy Challenge)旨在促进语音技术的语音匿名解决方案的开发。在本文中,我们对 2022 年举办的第二届挑战赛进行了系统的概述和分析。我们描述了用于系统开发和评估的语音匿名任务和数据集,介绍了用于评估的不同攻击模型,以及相关的客观和主观指标。我们介绍了三种匿名基线,概述了挑战赛参与者开发的匿名系统,并报告了所有系统的客观和主观评估结果。此外,我们还介绍了评估后分析和公开文献中报告的相关工作摘要。结果表明,基于语音转换的解决方案能更好地保护实用性,将自动语音识别与合成相结合的替代方案能实现更高的隐私性,而隐私性与实用性之间的权衡仍是当前匿名解决方案的固有问题。最后,我们介绍了我们对未来语音隐私挑战赛的想法和优先事项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE/ACM Transactions on Audio, Speech, and Language Processing
IEEE/ACM Transactions on Audio, Speech, and Language Processing ACOUSTICS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
11.30
自引率
11.10%
发文量
217
期刊介绍: The IEEE/ACM Transactions on Audio, Speech, and Language Processing covers audio, speech and language processing and the sciences that support them. In audio processing: transducers, room acoustics, active sound control, human audition, analysis/synthesis/coding of music, and consumer audio. In speech processing: areas such as speech analysis, synthesis, coding, speech and speaker recognition, speech production and perception, and speech enhancement. In language processing: speech and text analysis, understanding, generation, dialog management, translation, summarization, question answering and document indexing and retrieval, as well as general language modeling.
期刊最新文献
CLAPSep: Leveraging Contrastive Pre-Trained Model for Multi-Modal Query-Conditioned Target Sound Extraction Enhancing Robustness of Speech Watermarking Using a Transformer-Based Framework Exploiting Acoustic Features FTDKD: Frequency-Time Domain Knowledge Distillation for Low-Quality Compressed Audio Deepfake Detection ELSF: Entity-Level Slot Filling Framework for Joint Multiple Intent Detection and Slot Filling Proper Error Estimation and Calibration for Attention-Based Encoder-Decoder Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1