Compressing Structured Tensor Algebra

Mahdi Ghorbani, Emilien Bauer, Tobias Grosser, Amir Shaikhha
{"title":"Compressing Structured Tensor Algebra","authors":"Mahdi Ghorbani, Emilien Bauer, Tobias Grosser, Amir Shaikhha","doi":"arxiv-2407.13726","DOIUrl":null,"url":null,"abstract":"Tensor algebra is a crucial component for data-intensive workloads such as\nmachine learning and scientific computing. As the complexity of data grows,\nscientists often encounter a dilemma between the highly specialized dense\ntensor algebra and efficient structure-aware algorithms provided by sparse\ntensor algebra. In this paper, we introduce DASTAC, a framework to propagate\nthe tensors's captured high-level structure down to low-level code generation\nby incorporating techniques such as automatic data layout compression,\npolyhedral analysis, and affine code generation. Our methodology reduces memory\nfootprint by automatically detecting the best data layout, heavily benefits\nfrom polyhedral optimizations, leverages further optimizations, and enables\nparallelization through MLIR. Through extensive experimentation, we show that\nDASTAC achieves 1 to 2 orders of magnitude speedup over TACO, a\nstate-of-the-art sparse tensor compiler, and StructTensor, a state-of-the-art\nstructured tensor algebra compiler, with a significantly lower memory\nfootprint.","PeriodicalId":501197,"journal":{"name":"arXiv - CS - Programming Languages","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.13726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tensor algebra is a crucial component for data-intensive workloads such as machine learning and scientific computing. As the complexity of data grows, scientists often encounter a dilemma between the highly specialized dense tensor algebra and efficient structure-aware algorithms provided by sparse tensor algebra. In this paper, we introduce DASTAC, a framework to propagate the tensors's captured high-level structure down to low-level code generation by incorporating techniques such as automatic data layout compression, polyhedral analysis, and affine code generation. Our methodology reduces memory footprint by automatically detecting the best data layout, heavily benefits from polyhedral optimizations, leverages further optimizations, and enables parallelization through MLIR. Through extensive experimentation, we show that DASTAC achieves 1 to 2 orders of magnitude speedup over TACO, a state-of-the-art sparse tensor compiler, and StructTensor, a state-of-the-art structured tensor algebra compiler, with a significantly lower memory footprint.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
压缩结构化张量代数
张量代数是机器学习和科学计算等数据密集型工作负载的重要组成部分。随着数据复杂度的增加,科学家们经常会在高度专业化的张量代数和高效的结构感知算法之间左右为难。在本文中,我们介绍了 DASTAC,这是一个通过整合自动数据布局压缩、多面体分析和仿射代码生成等技术,将捕捉到的张量高层结构传播到底层代码生成的框架。我们的方法通过自动检测最佳数据布局来减少内存足迹,从多面体优化中获益匪浅,充分利用进一步优化,并通过 MLIR 实现并行化。通过大量实验,我们发现与最先进的稀疏张量编译器 TACO 和最先进的结构化张量代数编译器 StructTensor 相比,DASTAC 的速度提高了 1 到 2 个数量级,内存足迹也显著降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Memory Consistency and Program Transformations No Saved Kaleidosope: an 100% Jitted Neural Network Coding Language with Pythonic Syntax Towards Quantum Multiparty Session Types The Incredible Shrinking Context... in a decompiler near you Scheme Pearl: Quantum Continuations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1