Calibration methods in imbalanced binary classification

IF 1.2 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Annals of Mathematics and Artificial Intelligence Pub Date : 2024-07-19 DOI:10.1007/s10472-024-09952-8
Théo Guilbert, Olivier Caelen, Andrei Chirita, Marco Saerens
{"title":"Calibration methods in imbalanced binary classification","authors":"Théo Guilbert,&nbsp;Olivier Caelen,&nbsp;Andrei Chirita,&nbsp;Marco Saerens","doi":"10.1007/s10472-024-09952-8","DOIUrl":null,"url":null,"abstract":"<div><p>The calibration problem in machine learning classification tasks arises when a model’s output score does not align with the ground truth observed probability of the target class. There exist several parametric and non-parametric post-processing methods that can help to calibrate an existing classifier. In this work, we focus on binary classification cases where the dataset is imbalanced, meaning that the negative target class significantly outnumbers the positive one. We propose new parametric calibration methods designed to this specific case and a new calibration measure focusing on the primary objective in imbalanced problems: detecting infrequent positive cases. Experiments on several datasets show that, for imbalanced problems, our approaches outperform state-of-the-art methods in many cases.</p></div>","PeriodicalId":7971,"journal":{"name":"Annals of Mathematics and Artificial Intelligence","volume":"92 5","pages":"1319 - 1352"},"PeriodicalIF":1.2000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics and Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10472-024-09952-8","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The calibration problem in machine learning classification tasks arises when a model’s output score does not align with the ground truth observed probability of the target class. There exist several parametric and non-parametric post-processing methods that can help to calibrate an existing classifier. In this work, we focus on binary classification cases where the dataset is imbalanced, meaning that the negative target class significantly outnumbers the positive one. We propose new parametric calibration methods designed to this specific case and a new calibration measure focusing on the primary objective in imbalanced problems: detecting infrequent positive cases. Experiments on several datasets show that, for imbalanced problems, our approaches outperform state-of-the-art methods in many cases.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不平衡二元分类中的校准方法
在机器学习分类任务中,当模型的输出得分与观察到的目标类别的基本真实概率不一致时,就会出现校准问题。有几种参数和非参数后处理方法可以帮助校准现有分类器。在这项工作中,我们将重点放在数据集不平衡的二元分类情况上,这意味着负目标类明显多于正目标类。我们针对这种特殊情况提出了新的参数校准方法,并针对不平衡问题的主要目标提出了新的校准方法:检测不常见的正向案例。在多个数据集上的实验表明,对于不平衡问题,我们的方法在很多情况下都优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of Mathematics and Artificial Intelligence
Annals of Mathematics and Artificial Intelligence 工程技术-计算机:人工智能
CiteScore
3.00
自引率
8.30%
发文量
37
审稿时长
>12 weeks
期刊介绍: Annals of Mathematics and Artificial Intelligence presents a range of topics of concern to scholars applying quantitative, combinatorial, logical, algebraic and algorithmic methods to diverse areas of Artificial Intelligence, from decision support, automated deduction, and reasoning, to knowledge-based systems, machine learning, computer vision, robotics and planning. The journal features collections of papers appearing either in volumes (400 pages) or in separate issues (100-300 pages), which focus on one topic and have one or more guest editors. Annals of Mathematics and Artificial Intelligence hopes to influence the spawning of new areas of applied mathematics and strengthen the scientific underpinnings of Artificial Intelligence.
期刊最新文献
Costly information providing in binary contests Calibration methods in imbalanced binary classification Introduction to the special issue: selected papers from EMAS 2022 An extended knowledge compilation map for conditional preference statements-based and generalized additive utilities-based languages Knowledge compilation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1