Directional Electron Flow in a Selenoviologen-Based Tetracationic Cyclophane for Enhanced Visible-Light-Driven Hydrogen Evolution

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-07-23 DOI:10.1002/anie.202410525
Naiyao Li, Dr. Yawen Li, Zengrong Wang, Tianle Cao, Chenjing Liu, Prof. Dr. Hongyue Wang, Dr. Guoping Li, Prof. Dr. Gang He
{"title":"Directional Electron Flow in a Selenoviologen-Based Tetracationic Cyclophane for Enhanced Visible-Light-Driven Hydrogen Evolution","authors":"Naiyao Li,&nbsp;Dr. Yawen Li,&nbsp;Zengrong Wang,&nbsp;Tianle Cao,&nbsp;Chenjing Liu,&nbsp;Prof. Dr. Hongyue Wang,&nbsp;Dr. Guoping Li,&nbsp;Prof. Dr. Gang He","doi":"10.1002/anie.202410525","DOIUrl":null,"url":null,"abstract":"<p>Directional electron flow in the photocatalyst enables efficient charge separation, which is essential for efficient photocatalysis of H<sub>2</sub> production. Here, we report a novel class of tetracationic cyclophanes (<b>7</b>) incorporating bipyridine Pt(II) and selenoviologen. X-ray single-crystal structures reveal that <b>7</b> not only fixes the distances and spatial positions between its individual units but also exhibits a box-like rigid electron-deficient cavity. Moreover, host–guest recognition phenomena are observed between <b>7</b> and ferrocene, forming host–guest complexes with a 1 : 1 stoichiometry. <b>7</b> exhibits good redox properties, narrow energy gaps, and strong absorption in the visible range (370–500 nm) due to containing two selenoviologen (SeV<sup>2+</sup>) units. Meanwhile, the femtosecond transient absorption (fs-TA) reveals that <b>7</b> has stabilized dicationic biradical, efficient charge separation, and facilitates directional electron flow to achieve efficient electron transfer due to the formation of rigid cyclophane and electronic architecture. Then, <b>7</b> is applied to visible-light-driven hydrogen evolution with high hydrogen production (132 μmol), generation rate (11 μmol/h), turnover number (221), and apparent quantum yield (1.7 %), which provides a simplified and efficient photocatalytic strategy for solar energy conversion.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"63 47","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202410525","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Directional electron flow in the photocatalyst enables efficient charge separation, which is essential for efficient photocatalysis of H2 production. Here, we report a novel class of tetracationic cyclophanes (7) incorporating bipyridine Pt(II) and selenoviologen. X-ray single-crystal structures reveal that 7 not only fixes the distances and spatial positions between its individual units but also exhibits a box-like rigid electron-deficient cavity. Moreover, host–guest recognition phenomena are observed between 7 and ferrocene, forming host–guest complexes with a 1 : 1 stoichiometry. 7 exhibits good redox properties, narrow energy gaps, and strong absorption in the visible range (370–500 nm) due to containing two selenoviologen (SeV2+) units. Meanwhile, the femtosecond transient absorption (fs-TA) reveals that 7 has stabilized dicationic biradical, efficient charge separation, and facilitates directional electron flow to achieve efficient electron transfer due to the formation of rigid cyclophane and electronic architecture. Then, 7 is applied to visible-light-driven hydrogen evolution with high hydrogen production (132 μmol), generation rate (11 μmol/h), turnover number (221), and apparent quantum yield (1.7 %), which provides a simplified and efficient photocatalytic strategy for solar energy conversion.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硒化四阳离子环烷中的定向电子流用于增强可见光驱动的氢气进化
光催化剂中的定向电子流能够实现高效的电荷分离,这对于高效光催化产生 H2 至关重要。在此,我们报告了一类新型四阳离子环烷(7),其中包含双吡啶铂(II)和硒维欧硒。X 射线单晶结构显示,7 不仅固定了其单个单元之间的距离和空间位置,而且还呈现出一个类似箱形的刚性缺电子空腔。此外,还观察到 7 与二茂铁之间的主客体识别现象,在 MeCN 中形成 1:1 配比的主客体复合物。7 具有良好的氧化还原特性,能隙较窄,由于含有两个硒维欧根(SeV2+)单元,在可见光范围(370-500 nm)内有较强的吸收。同时,飞秒瞬态吸收(fs-TA)表明,7 具有稳定的二阳离子双拉子,电荷分离效率高,并且由于形成了刚性环烷和电子结构,有利于电子定向流动,从而实现高效电子转移。然后,7 被应用于可见光驱动的氢气进化,具有高产氢量(132 μmol)、生成率(11 μmol/h)、周转次数(221)和表观量子产率(1.7%),为太阳能转换提供了一种简化、高效的光催化策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
The Diarylprolinol Silyl Ethers: After 20 Years Still Opening New Doors in Asymmetric Catalysis Synergistic Molecular Locking Through Sodium‐Integrated Cross‐Linkable Scaffold Enables Durable Perovskite Solar Cells and Modules Lipid Modified with Pyridinium Betaine Manipulates Liposomal Membrane Fusion Behavior for Spatially Confined Cytoplasmic Delivery Yb 2 ‐Tb Upconversion in a Hetero‐Trimetallic Molecular Lanthanide Complex Towards More Robust Nanobioscience: Launching the NanoBubbles Replication Initiative
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1