Directional Electron Flow in a Selenoviologen-Based Tetracationic Cyclophane for Enhanced Visible-Light-Driven Hydrogen Evolution.

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-07-23 DOI:10.1002/anie.202410525
Naiyao Li, Yawen Li, Zengrong Wang, Tianle Cao, Chenjing Liu, Hongyue Wang, Guoping Li, Gang He
{"title":"Directional Electron Flow in a Selenoviologen-Based Tetracationic Cyclophane for Enhanced Visible-Light-Driven Hydrogen Evolution.","authors":"Naiyao Li, Yawen Li, Zengrong Wang, Tianle Cao, Chenjing Liu, Hongyue Wang, Guoping Li, Gang He","doi":"10.1002/anie.202410525","DOIUrl":null,"url":null,"abstract":"<p><p>Directional electron flow in the photocatalyst enables efficient charge separation, which is essential for efficient photocatalysis of H2 production. Here, we report a novel class of tetracationic cyclophanes (7) incorporating bipyridine Pt(II) and selenoviologen. X-ray single-crystal structures reveal that 7 not only fixes the distances and spatial positions between its individual units but also exhibits a box-like rigid electron-deficient cavity. Moreover, host-guest recognition phenomena are observed between 7 and ferrocene, forming host-guest complexes with a 1:1 stoichiometry in MeCN. 7 exhibits good redox properties, narrow energy gaps, and strong absorption in the visible range (370-500 nm) due to containing two selenoviologen (SeV2+) units. Meanwhile, the femtosecond transient absorption (fs-TA) reveals that 7 has stabilized dicationic biradical, efficient charge separation, and facilitates directional electron flow to achieve efficient electron transfer due to the formation of rigid cyclophane and electronic architecture. Then, 7 is applied to visible-light-driven hydrogen evolution with high hydrogen production (132 μmol), generation rate (11 μmol/h), turnover number (221), and apparent quantum yield (1.7%), which provides a simplified and efficient photocatalytic strategy for solar energy conversion.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202410525","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Directional electron flow in the photocatalyst enables efficient charge separation, which is essential for efficient photocatalysis of H2 production. Here, we report a novel class of tetracationic cyclophanes (7) incorporating bipyridine Pt(II) and selenoviologen. X-ray single-crystal structures reveal that 7 not only fixes the distances and spatial positions between its individual units but also exhibits a box-like rigid electron-deficient cavity. Moreover, host-guest recognition phenomena are observed between 7 and ferrocene, forming host-guest complexes with a 1:1 stoichiometry in MeCN. 7 exhibits good redox properties, narrow energy gaps, and strong absorption in the visible range (370-500 nm) due to containing two selenoviologen (SeV2+) units. Meanwhile, the femtosecond transient absorption (fs-TA) reveals that 7 has stabilized dicationic biradical, efficient charge separation, and facilitates directional electron flow to achieve efficient electron transfer due to the formation of rigid cyclophane and electronic architecture. Then, 7 is applied to visible-light-driven hydrogen evolution with high hydrogen production (132 μmol), generation rate (11 μmol/h), turnover number (221), and apparent quantum yield (1.7%), which provides a simplified and efficient photocatalytic strategy for solar energy conversion.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硒化四阳离子环烷中的定向电子流用于增强可见光驱动的氢气进化
光催化剂中的定向电子流能够实现高效的电荷分离,这对于高效光催化产生 H2 至关重要。在此,我们报告了一类新型四阳离子环烷(7),其中包含双吡啶铂(II)和硒维欧硒。X 射线单晶结构显示,7 不仅固定了其单个单元之间的距离和空间位置,而且还呈现出一个类似箱形的刚性缺电子空腔。此外,还观察到 7 与二茂铁之间的主客体识别现象,在 MeCN 中形成 1:1 配比的主客体复合物。7 具有良好的氧化还原特性,能隙较窄,由于含有两个硒维欧根(SeV2+)单元,在可见光范围(370-500 nm)内有较强的吸收。同时,飞秒瞬态吸收(fs-TA)表明,7 具有稳定的二阳离子双拉子,电荷分离效率高,并且由于形成了刚性环烷和电子结构,有利于电子定向流动,从而实现高效电子转移。然后,7 被应用于可见光驱动的氢气进化,具有高产氢量(132 μmol)、生成率(11 μmol/h)、周转次数(221)和表观量子产率(1.7%),为太阳能转换提供了一种简化、高效的光催化策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Dynamic Active Sites in Electrocatalysis Stepwise One-Shot Borylation Reactions for Intersecting DABNA Substructures Exhibiting Bright Yellow‒Green Electroluminescence with EQE Beyond 40% and Mild Roll-Off Chemical Synergic Stabilization of High Br-Content Mixed-Halide Wide-Bandgap Perovskites for Durable Multi-Terminal Tandem Solar Cells with Minimized Pb Leakage Exchange of CO2 with CO as Reactant Switches Selectivity in Photoreduction on Co–ZrO2 from C1–3 Paraffin to Small Olefins Metal-Free Wet Chemistry for the Fast Gram-Scale Synthesis of γ-Graphyne and its Derivatives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1