Exploring the Complex Chemistry and Degradation of Ascorbic Acid in Aqueous Nanoparticle Synthesis.

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-12-20 Epub Date: 2024-11-06 DOI:10.1002/anie.202412542
Debashree Roy, Hannah M Johnson, Matthew J Hurlock, Kingshuk Roy, Qiang Zhang, Liane M Moreau
{"title":"Exploring the Complex Chemistry and Degradation of Ascorbic Acid in Aqueous Nanoparticle Synthesis.","authors":"Debashree Roy, Hannah M Johnson, Matthew J Hurlock, Kingshuk Roy, Qiang Zhang, Liane M Moreau","doi":"10.1002/anie.202412542","DOIUrl":null,"url":null,"abstract":"<p><p>Ascorbic acid (AA) is the most widely used reductant for noble metal nanoparticle (NP) synthesis. Despite the synthetic relevance, its aqueous chemistry remains misunderstood, due in part to various assumptions about its reduction pathway which are insufficiently supported by experimental evidence. This study aims to provide an understanding of the complex chemistry associated with AA under aqueous conditions. We demonstrate that (i) AA undergoes appreciable degradation in alkaline solution on a timescale relevant to NP synthesis, (ii) contrary to popular belief, AA does not degrade into dehydroascorbic acid (DHA), nor is DHA the oxidized product of AA under noble metal NP synthetic conditions, (iii) DHA, which readily degrades under alkaline conditions, can also effectively reduce metal salt precursors to metal NPs, (iv) neither ascorbate nor dehydroascorbate act as surface capping agents post-synthetically on the NPs (v) AA degradation time greatly affects the morphology and polydispersity of the resultant NP. Results from our mechanistic investigation enabled us to utilize purposefully-aged reductants to achieve control over shape yield and monodispersity in the seed-mediated synthesis of Au nanorods. Our findings have important implications for achieving monodispersed products in the many metal NP synthesis reactions that make use of AA as a reducing agent.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":" ","pages":"e202412542"},"PeriodicalIF":16.1000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202412542","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ascorbic acid (AA) is the most widely used reductant for noble metal nanoparticle (NP) synthesis. Despite the synthetic relevance, its aqueous chemistry remains misunderstood, due in part to various assumptions about its reduction pathway which are insufficiently supported by experimental evidence. This study aims to provide an understanding of the complex chemistry associated with AA under aqueous conditions. We demonstrate that (i) AA undergoes appreciable degradation in alkaline solution on a timescale relevant to NP synthesis, (ii) contrary to popular belief, AA does not degrade into dehydroascorbic acid (DHA), nor is DHA the oxidized product of AA under noble metal NP synthetic conditions, (iii) DHA, which readily degrades under alkaline conditions, can also effectively reduce metal salt precursors to metal NPs, (iv) neither ascorbate nor dehydroascorbate act as surface capping agents post-synthetically on the NPs (v) AA degradation time greatly affects the morphology and polydispersity of the resultant NP. Results from our mechanistic investigation enabled us to utilize purposefully-aged reductants to achieve control over shape yield and monodispersity in the seed-mediated synthesis of Au nanorods. Our findings have important implications for achieving monodispersed products in the many metal NP synthesis reactions that make use of AA as a reducing agent.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索水性纳米粒子合成中抗坏血酸的复杂化学性质和降解。
抗坏血酸(AA)是贵金属纳米粒子(NP)合成中使用最广泛的还原剂。尽管与合成有关,但其水化学性质仍被误解,部分原因是对其还原途径的各种假设没有得到实验证据的充分支持。本研究旨在了解 AA 在水溶液条件下的复杂化学反应。我们证明:(i) AA 在碱性溶液中会发生明显降解,降解时间与 NP 合成相关;(ii) 与普遍看法相反,AA 不会降解为脱氢抗坏血酸 (DHA),DHA 也不是 AA 在贵金属 NP 合成条件下的氧化产物;(iii) DHA、(iv) 抗坏血酸酯和脱氢抗坏血酸酯在合成后都不能作为 NP 的表面封端剂 (v) AA 降解时间会极大地影响生成 NP 的形态和多分散性。我们的机理研究结果使我们能够在种子介导的金纳米棒合成过程中,利用特意老化的还原剂来实现对形状产量和单分散性的控制。我们的研究结果对于在许多使用 AA 作为还原剂的金属 NP 合成反应中实现单分散产物具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Exploring the Complex Chemistry and Degradation of Ascorbic Acid in Aqueous Nanoparticle Synthesis. Catalytic Promiscuity of Fatty Acid Photodecarboxylase Enables Stereoselective Synthesis of Chiral α-Tetralones. Engineering Robust Triazine Crosslinked and Pyridine Capped Anion Exchange Membrane for Advanced Water Electrolysis. In-Situ Growth of One-Dimensional Blocking Layer to Mitigate Deficient Surface of Single-Crystal Perovskites. Highly Durable Inverted Inorganic Perovskite/Organic Tandem Solar Cells Enabled by Multifunctional Additives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1