Tobias Rautio, Robin Obrist, Lucas Krebs, Therése Klingstedt, Johan Dahlén, Xiongyu Wu, Henrik Gréen
{"title":"In vitro metabolism study of ADB-P-5Br-INACA and ADB-4en-P-5Br-INACA using human hepatocytes, liver microsomes, and in-house synthesized references.","authors":"Tobias Rautio, Robin Obrist, Lucas Krebs, Therése Klingstedt, Johan Dahlén, Xiongyu Wu, Henrik Gréen","doi":"10.1002/dta.3773","DOIUrl":null,"url":null,"abstract":"<p><p>Synthetic cannabinoids (SCs) remain a major public health concern, as they continuously are linked to severe intoxications and drug-related deaths worldwide. As new SCs continue to emerge on the illicit drug market, an understanding of SC metabolism is needed to identify formed metabolites that may serve as biomarkers in forensic toxicology screening and for understanding the pharmacokinetics of the drugs. In this work, the metabolism of ADB-4en-P-5Br-INACA and ADB-P-5Br-INACA ((S)-N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-5-bromo-1-(pent-4-en-1-yl)-1H-indazole-3-carboxamide, (S)-N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-5-bromo-1-pentyl-1H-indazole-3-carboxamide respectively) were investigated using human hepatocytes in vitro and in-house synthesized references. Both SCs were incubated with pooled human hepatocytes over 3 h, with the aim to identify unique and abundant metabolites using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). In total nine metabolites were identified for ADB-4en-P-5Br-INACA and 10 metabolites for ADB-P-5Br-INACA. The observed biotransformations included dihydrodiol formation, terminal amide hydrolysis, hydroxylation, dehydrogenation, carbonyl formation, glucuronidation, and combinations thereof. The major metabolites were confirmed by in-house synthesized references. Recommended biomarkers for ADB-P-5Br-INACA and ADB-4en-P-5Br-INACA are the terminal hydroxy and dihydrodiol metabolite respectively.</p>","PeriodicalId":160,"journal":{"name":"Drug Testing and Analysis","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Testing and Analysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/dta.3773","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Synthetic cannabinoids (SCs) remain a major public health concern, as they continuously are linked to severe intoxications and drug-related deaths worldwide. As new SCs continue to emerge on the illicit drug market, an understanding of SC metabolism is needed to identify formed metabolites that may serve as biomarkers in forensic toxicology screening and for understanding the pharmacokinetics of the drugs. In this work, the metabolism of ADB-4en-P-5Br-INACA and ADB-P-5Br-INACA ((S)-N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-5-bromo-1-(pent-4-en-1-yl)-1H-indazole-3-carboxamide, (S)-N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-5-bromo-1-pentyl-1H-indazole-3-carboxamide respectively) were investigated using human hepatocytes in vitro and in-house synthesized references. Both SCs were incubated with pooled human hepatocytes over 3 h, with the aim to identify unique and abundant metabolites using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). In total nine metabolites were identified for ADB-4en-P-5Br-INACA and 10 metabolites for ADB-P-5Br-INACA. The observed biotransformations included dihydrodiol formation, terminal amide hydrolysis, hydroxylation, dehydrogenation, carbonyl formation, glucuronidation, and combinations thereof. The major metabolites were confirmed by in-house synthesized references. Recommended biomarkers for ADB-P-5Br-INACA and ADB-4en-P-5Br-INACA are the terminal hydroxy and dihydrodiol metabolite respectively.
期刊介绍:
As the incidence of drugs escalates in 21st century living, their detection and analysis have become increasingly important. Sport, the workplace, crime investigation, homeland security, the pharmaceutical industry and the environment are just some of the high profile arenas in which analytical testing has provided an important investigative tool for uncovering the presence of extraneous substances.
In addition to the usual publishing fare of primary research articles, case reports and letters, Drug Testing and Analysis offers a unique combination of; ‘How to’ material such as ‘Tutorials’ and ‘Reviews’, Speculative pieces (‘Commentaries’ and ‘Perspectives'', providing a broader scientific and social context to the aspects of analytical testing), ‘Annual banned substance reviews’ (delivering a critical evaluation of the methods used in the characterization of established and newly outlawed compounds).
Rather than focus on the application of a single technique, Drug Testing and Analysis employs a unique multidisciplinary approach to the field of controversial compound determination. Papers discussing chromatography, mass spectrometry, immunological approaches, 1D/2D gel electrophoresis, to name just a few select methods, are welcomed where their application is related to any of the six key topics listed below.