[Relationship between lipid metabolism molecules in plasma and carotid atheroscle-rotic plaques, traditional cardiovascular risk factors, and dietary factors].
{"title":"[Relationship between lipid metabolism molecules in plasma and carotid atheroscle-rotic plaques, traditional cardiovascular risk factors, and dietary factors].","authors":"Jing He, Zhongze Fang, Ying Yang, Jing Liu, Wenyao Ma, Yong Huo, Wei Gao, Yangfeng Wu, Gaoqiang Xie","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To explore the relationship between lipid metabolism molecules in plasma and carotid atherosclerotic plaques, traditional cardiovascular risk factors and possible dietary related factors.</p><p><strong>Methods: </strong>Firstly, among 1 312 community people from those who participated in a 10-year follow-up study of subclinical atherosclerosis cohort in Shijingshan District, Beijing, 85 individuals with 2 or more carotid soft plaques or mixed plaques and 89 healthy individuals without plaques were selected according to the inclusive and the exclusive criteria (< 70 years, not having clinical cardiovascular disease and other diseases, etc.). Secondly, 10 cases and 10 controls were randomly selected in the above 85 and 89 individuals respectively. Carotid plaques were detected using GE Vivid i Ultrasound Machine with 8L detector. Lipid metabolism molecules were detected by high performance liquid chromatography-mass spectrometry. The detection indexes included 113 lipid metabolism molecules. Traditional cardiovascular risk factors were collected by unified standard questionnaires, and dietary related factors were collected by main dietary frequency and weight scale. The difference of lipid metabolism molecules between the case group and the control group was analyzed by Wilcoxin rank test. In the control group, the Spearman correlation method was used to analyze the correlation between statistically significant lipid metabolism molecules and traditional cardiovascular risk factors and dietary factors.</p><p><strong>Results: </strong>Among the 113 lipid metabolism molecules, 53 lipid metabolism molecules were detected. C24:0 sphingomyelin (SM), C22:0/ C24:0 ceramide molecules, C18:0 phosphoethanolamine (PE) molecules, and C18:0/C18:2 (Cis) phosphatidylcholine (PC) were significantly higher in the carotid atherosclerotic plaque group than in the control group. The correlation analysis showed that C24:0 SM was significantly positively correlated with low density lipoprotein cholesterol (LDL-C, <i>r</i>=0.636, <i>P</i> < 0.05), C18:2 (Cis) PC (DLPC) was significantly positively correlated with systolic pressure (<i>r</i>=0.733, <i>P</i> < 0.05), C18:0 PE was significantly positively correlated with high sensitivity C-response protein (<i>r</i>=0.782, <i>P</i> < 0.01), C22:0, C24:0 ceramide and C18:0 PE were negatively correlated with vegetable intake (<i>r</i>=-0.679, <i>P</i> < 0.05;<i>r</i>=-0.711, <i>P</i> < 0.05;<i>r</i>=-0.808, <i>P</i> < 0.01), C24:0 ceramide was also negatively correlated with beans food intake (<i>r</i>=-0.736, <i>P</i> < 0.05) in the control group.</p><p><strong>Conclusions: </strong>The increase of plasma C24:0 SM, C22:0, C24:0 ceramide, C18:0 PE, C18:2 (Cis) PC (DLPC), C18:0 PC (DSPC) may be new risk factors for human atherosclerotic plaques. These molecules may be related to blood lipid, blood pressure or inflammatory level and the intake of vegetables and soy products, but the nature of the association needs to be verified in a larger sample population.</p>","PeriodicalId":8790,"journal":{"name":"北京大学学报(医学版)","volume":"56 4","pages":"722-728"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11284460/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"北京大学学报(医学版)","FirstCategoryId":"3","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To explore the relationship between lipid metabolism molecules in plasma and carotid atherosclerotic plaques, traditional cardiovascular risk factors and possible dietary related factors.
Methods: Firstly, among 1 312 community people from those who participated in a 10-year follow-up study of subclinical atherosclerosis cohort in Shijingshan District, Beijing, 85 individuals with 2 or more carotid soft plaques or mixed plaques and 89 healthy individuals without plaques were selected according to the inclusive and the exclusive criteria (< 70 years, not having clinical cardiovascular disease and other diseases, etc.). Secondly, 10 cases and 10 controls were randomly selected in the above 85 and 89 individuals respectively. Carotid plaques were detected using GE Vivid i Ultrasound Machine with 8L detector. Lipid metabolism molecules were detected by high performance liquid chromatography-mass spectrometry. The detection indexes included 113 lipid metabolism molecules. Traditional cardiovascular risk factors were collected by unified standard questionnaires, and dietary related factors were collected by main dietary frequency and weight scale. The difference of lipid metabolism molecules between the case group and the control group was analyzed by Wilcoxin rank test. In the control group, the Spearman correlation method was used to analyze the correlation between statistically significant lipid metabolism molecules and traditional cardiovascular risk factors and dietary factors.
Results: Among the 113 lipid metabolism molecules, 53 lipid metabolism molecules were detected. C24:0 sphingomyelin (SM), C22:0/ C24:0 ceramide molecules, C18:0 phosphoethanolamine (PE) molecules, and C18:0/C18:2 (Cis) phosphatidylcholine (PC) were significantly higher in the carotid atherosclerotic plaque group than in the control group. The correlation analysis showed that C24:0 SM was significantly positively correlated with low density lipoprotein cholesterol (LDL-C, r=0.636, P < 0.05), C18:2 (Cis) PC (DLPC) was significantly positively correlated with systolic pressure (r=0.733, P < 0.05), C18:0 PE was significantly positively correlated with high sensitivity C-response protein (r=0.782, P < 0.01), C22:0, C24:0 ceramide and C18:0 PE were negatively correlated with vegetable intake (r=-0.679, P < 0.05;r=-0.711, P < 0.05;r=-0.808, P < 0.01), C24:0 ceramide was also negatively correlated with beans food intake (r=-0.736, P < 0.05) in the control group.
Conclusions: The increase of plasma C24:0 SM, C22:0, C24:0 ceramide, C18:0 PE, C18:2 (Cis) PC (DLPC), C18:0 PC (DSPC) may be new risk factors for human atherosclerotic plaques. These molecules may be related to blood lipid, blood pressure or inflammatory level and the intake of vegetables and soy products, but the nature of the association needs to be verified in a larger sample population.
期刊介绍:
Beijing Da Xue Xue Bao Yi Xue Ban / Journal of Peking University (Health Sciences), established in 1959, is a national academic journal sponsored by Peking University, and its former name is Journal of Beijing Medical University. The coverage of the Journal includes basic medical sciences, clinical medicine, oral medicine, surgery, public health and epidemiology, pharmacology and pharmacy. Over the last few years, the Journal has published articles and reports covering major topics in the different special issues (e.g. research on disease genome, theory of drug withdrawal, mechanism and prevention of cardiovascular and cerebrovascular diseases, stomatology, orthopaedic, public health, urology and reproductive medicine). All the topics involve latest advances in medical sciences, hot topics in specific specialties, and prevention and treatment of major diseases.
The Journal has been indexed and abstracted by PubMed Central (PMC), MEDLINE/PubMed, EBSCO, Embase, Scopus, Chemical Abstracts (CA), Western Pacific Region Index Medicus (WPR), JSTChina, and almost all the Chinese sciences and technical index systems, including Chinese Science and Technology Paper Citation Database (CSTPCD), Chinese Science Citation Database (CSCD), China BioMedical Bibliographic Database (CBM), CMCI, Chinese Biological Abstracts, China National Academic Magazine Data-Base (CNKI), Wanfang Data (ChinaInfo), etc.