Biswajit Basu, Ayon Dutta, Dipanjana Ash, Bhupendra Prajapati
{"title":"Nanoemulsions in Skin Cancer Therapy: A Promising Frontier.","authors":"Biswajit Basu, Ayon Dutta, Dipanjana Ash, Bhupendra Prajapati","doi":"10.2174/0113892010302313240610111842","DOIUrl":null,"url":null,"abstract":"<p><p>Skin cancer, a global burden for particularly white people, is classified as various histopathological types, including malignant melanoma, basal and squamous cell carcinoma, on the basis of affected different skin layers. Clinical adjuvant therapy (electro-chemotherapy, radio- and immuno therapy), surgical techniques (Cryosurgery, laser treatment, dermabrasion, Moh's micrographic surgery), photodynamic treatment and theranostic approaches are confined only for the treatment of serious health issues. Therefore, nanotechnology based approaches, especially nanoemulsion, a non-spontaneous, transparent or translucent, kinetically stable nanostructured (1-1000nm) colloidal dispersion (comprised of oil, water and surfactant/cosurfactant), are being popularised as a potential topical nanocarrier to deliver BCS class II and IV anti-neoplastic drugs attributing to its capacity for both active and passive tumor targeting in controlled or sustained manner and improving bioavailability via enhancing permeabilityretention effect with minimal adverse effects. Numerous research on nanoemulsion for the treatment of both melanoma and non-melanoma skin cancer is only limited to preclinical stages as several physiological variables reduce the effectiveness of nanoemulsion via restricting topical penetration.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892010302313240610111842","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Skin cancer, a global burden for particularly white people, is classified as various histopathological types, including malignant melanoma, basal and squamous cell carcinoma, on the basis of affected different skin layers. Clinical adjuvant therapy (electro-chemotherapy, radio- and immuno therapy), surgical techniques (Cryosurgery, laser treatment, dermabrasion, Moh's micrographic surgery), photodynamic treatment and theranostic approaches are confined only for the treatment of serious health issues. Therefore, nanotechnology based approaches, especially nanoemulsion, a non-spontaneous, transparent or translucent, kinetically stable nanostructured (1-1000nm) colloidal dispersion (comprised of oil, water and surfactant/cosurfactant), are being popularised as a potential topical nanocarrier to deliver BCS class II and IV anti-neoplastic drugs attributing to its capacity for both active and passive tumor targeting in controlled or sustained manner and improving bioavailability via enhancing permeabilityretention effect with minimal adverse effects. Numerous research on nanoemulsion for the treatment of both melanoma and non-melanoma skin cancer is only limited to preclinical stages as several physiological variables reduce the effectiveness of nanoemulsion via restricting topical penetration.
皮肤癌是全球尤其是白人的一大负担,根据受影响的不同皮肤层可分为各种组织病理学类型,包括恶性黑色素瘤、基底细胞癌和鳞状细胞癌。临床辅助疗法(电化学疗法、放射疗法和免疫疗法)、外科技术(冷冻手术、激光治疗、磨皮术、莫氏显微外科手术)、光动力疗法和治疗方法只限于治疗严重的健康问题。因此,基于纳米技术的方法,特别是纳米乳液,一种非自发的、透明或半透明的、动力学稳定的纳米结构(1-1000 纳米)胶体分散体(由油、水和表面活性剂/共表面活性剂组成)、作为一种潜在的外用纳米载体,纳米乳液被广泛应用于递送 BCS II 类和 IV 类抗肿瘤药物,这是因为纳米乳液能够以可控或持续的方式主动和被动地靶向肿瘤,并通过增强渗透性滞留效应提高生物利用度,同时将不良反应降至最低。关于纳米乳剂治疗黑色素瘤和非黑色素瘤皮肤癌的大量研究仅局限于临床前阶段,因为一些生理变量限制了纳米乳剂的局部渗透,从而降低了其有效性。
期刊介绍:
Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal includes timely in-depth reviews, original research articles and letters written by leaders in the field, covering a range of current topics in scientific areas of Pharmaceutical Biotechnology. Invited and unsolicited review articles are welcome. The journal encourages contributions describing research at the interface of drug discovery and pharmacological applications, involving in vitro investigations and pre-clinical or clinical studies. Scientific areas within the scope of the journal include pharmaceutical chemistry, biochemistry and genetics, molecular and cellular biology, and polymer and materials sciences as they relate to pharmaceutical science and biotechnology. In addition, the journal also considers comprehensive studies and research advances pertaining food chemistry with pharmaceutical implication. Areas of interest include:
DNA/protein engineering and processing
Synthetic biotechnology
Omics (genomics, proteomics, metabolomics and systems biology)
Therapeutic biotechnology (gene therapy, peptide inhibitors, enzymes)
Drug delivery and targeting
Nanobiotechnology
Molecular pharmaceutics and molecular pharmacology
Analytical biotechnology (biosensing, advanced technology for detection of bioanalytes)
Pharmacokinetics and pharmacodynamics
Applied Microbiology
Bioinformatics (computational biopharmaceutics and modeling)
Environmental biotechnology
Regenerative medicine (stem cells, tissue engineering and biomaterials)
Translational immunology (cell therapies, antibody engineering, xenotransplantation)
Industrial bioprocesses for drug production and development
Biosafety
Biotech ethics
Special Issues devoted to crucial topics, providing the latest comprehensive information on cutting-edge areas of research and technological advances, are welcome.
Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.