Jonny Kinzi, Janine Hussner, Isabell Seibert, Mirubagini Vythilingam, Celina Vonwyl, Clarisse Gherardi, Pascal Detampel, Oliver Schwardt, Daniel Ricklin, Henriette E Meyer Zu Schwabedissen
{"title":"Impact of OATP2B1 on Pharmacokinetics of Atorvastatin Investigated in <i>rSlco2b1</i>-Knockout and <i>SLCO2B1</i>-Knockin Rats.","authors":"Jonny Kinzi, Janine Hussner, Isabell Seibert, Mirubagini Vythilingam, Celina Vonwyl, Clarisse Gherardi, Pascal Detampel, Oliver Schwardt, Daniel Ricklin, Henriette E Meyer Zu Schwabedissen","doi":"10.1124/dmd.124.001686","DOIUrl":null,"url":null,"abstract":"<p><p>The organic anion transporting polypeptide (OATP) 2B1 is considered an emerging drug transporter that is found expressed in pharmacokinetically relevant organs such as the liver, small intestine, and kidney. Despite its interaction with various substrate drugs, the understanding of its in vivo relevance is still limited. In this study, we first validated the interaction of atorvastatin with rat OATP2B1 using transiently transfected HeLa cells. Moreover, we characterized our <i>rSlco2b1</i>-knockout and <i>SLCO2B1</i>-knockin rats for mRNA, protein expression, and localization of OATP2B1 in the liver, small intestine, and kidney. The transporter showed the highest expression in the liver followed by the small intestine. In humanized rats, human OATP2B1 is localized on the sinusoidal membrane of hepatocytes. In enterocytes of wild-type and humanized rats, the transporter was detected in the luminal membrane with the vast majority being localized subapical. Subsequently, we assessed atorvastatin pharmacokinetics in male wild-type, <i>rSlco2b1</i>-knockout, and <i>SLCO2B1</i>-knockin rats after a single-dose administration (orally and intravenously). Investigating the contribution of rat OATP2B1 or human OATP2B1 to oral atorvastatin pharmacokinetics revealed no differences in concentration-time profiles or pharmacokinetic parameters. However, when comparing the pharmacokinetics of atorvastatin after intravenous administration in <i>SLCO2B1</i>-humanized rats and knockout animals, notable differences were observed. In particular, the systemic exposure (area under the curve) decreased by approximately 40% in humanized animals, whereas the clearance was 57% higher in animals expressing human OATP2B1. These findings indicate that human OATP2B1 influences pharmacokinetics of atorvastatin after intravenous administration, most likely by contributing to the hepatic uptake. SIGNIFICANCE STATEMENT: Wild-type, <i>rSlco2b1</i>-knockout, and <i>SLCO2B1</i>-humanized Wistar rats were characterized for the expression of rat and human <i>SLCO2B1</i>/OATP2B1. Pharmacokinetic studies of atorvastatin over 24 hours were conducted in male wild-type, <i>rSlco2b1</i>-knockout, and <i>SLCO2B1</i>-humanized rats. After a single-dose intravenous administration, a lower systemic exposure and an increase in clearance were observed in <i>SLCO2B1</i>-humanized rats compared with knockout animals indicating a contribution of OATP2B1 to the hepatic clearance.</p>","PeriodicalId":11309,"journal":{"name":"Drug Metabolism and Disposition","volume":" ","pages":"957-965"},"PeriodicalIF":4.4000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Metabolism and Disposition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1124/dmd.124.001686","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The organic anion transporting polypeptide (OATP) 2B1 is considered an emerging drug transporter that is found expressed in pharmacokinetically relevant organs such as the liver, small intestine, and kidney. Despite its interaction with various substrate drugs, the understanding of its in vivo relevance is still limited. In this study, we first validated the interaction of atorvastatin with rat OATP2B1 using transiently transfected HeLa cells. Moreover, we characterized our rSlco2b1-knockout and SLCO2B1-knockin rats for mRNA, protein expression, and localization of OATP2B1 in the liver, small intestine, and kidney. The transporter showed the highest expression in the liver followed by the small intestine. In humanized rats, human OATP2B1 is localized on the sinusoidal membrane of hepatocytes. In enterocytes of wild-type and humanized rats, the transporter was detected in the luminal membrane with the vast majority being localized subapical. Subsequently, we assessed atorvastatin pharmacokinetics in male wild-type, rSlco2b1-knockout, and SLCO2B1-knockin rats after a single-dose administration (orally and intravenously). Investigating the contribution of rat OATP2B1 or human OATP2B1 to oral atorvastatin pharmacokinetics revealed no differences in concentration-time profiles or pharmacokinetic parameters. However, when comparing the pharmacokinetics of atorvastatin after intravenous administration in SLCO2B1-humanized rats and knockout animals, notable differences were observed. In particular, the systemic exposure (area under the curve) decreased by approximately 40% in humanized animals, whereas the clearance was 57% higher in animals expressing human OATP2B1. These findings indicate that human OATP2B1 influences pharmacokinetics of atorvastatin after intravenous administration, most likely by contributing to the hepatic uptake. SIGNIFICANCE STATEMENT: Wild-type, rSlco2b1-knockout, and SLCO2B1-humanized Wistar rats were characterized for the expression of rat and human SLCO2B1/OATP2B1. Pharmacokinetic studies of atorvastatin over 24 hours were conducted in male wild-type, rSlco2b1-knockout, and SLCO2B1-humanized rats. After a single-dose intravenous administration, a lower systemic exposure and an increase in clearance were observed in SLCO2B1-humanized rats compared with knockout animals indicating a contribution of OATP2B1 to the hepatic clearance.
期刊介绍:
An important reference for all pharmacology and toxicology departments, DMD is also a valuable resource for medicinal chemists involved in drug design and biochemists with an interest in drug metabolism, expression of drug metabolizing enzymes, and regulation of drug metabolizing enzyme gene expression. Articles provide experimental results from in vitro and in vivo systems that bring you significant and original information on metabolism and disposition of endogenous and exogenous compounds, including pharmacologic agents and environmental chemicals.