Yangting Zhao, Kai Li, Chongyang Chen, Xiaoyu Lv, Yawen Wang, Lihua Ma, Songbo Fu, Jingfang Liu
{"title":"A novel <i>AVPR2</i> gene mutation in a Chinese pedigree with nephrogenic diabetes insipidus.","authors":"Yangting Zhao, Kai Li, Chongyang Chen, Xiaoyu Lv, Yawen Wang, Lihua Ma, Songbo Fu, Jingfang Liu","doi":"10.1080/00325481.2024.2383555","DOIUrl":null,"url":null,"abstract":"<p><p>Nephrogenic diabetes insipidus (NDI) is a rare genetic disorder primarily associated with mutations in the arginine vasopressin receptor 2 (<i>AVPR2</i>) gene or the aquaporin 2 (<i>AQP2</i>) gene, resulting in impaired water reabsorption in the renal tubules. This report describes a case of a young male patient with NDI from China with a history of polydipsia and polyuria for over 15 years. Laboratory examinations of the proband indicated low urine-specific gravity and osmolality. Urologic ultrasound revealed severe bilateral hydronephrosis in both kidneys, bilateral dilatation of the ureters, roughness of the bladder wall, and the formation of muscle trabeculae. The diagnosis of diabetes insipidus was confirmed by water deprivation tests. The administration of posterior pituitary hormone did not alter urine-specific gravity, and osmolality remained at a low level (<300 mOsm/kg). Based on these findings, and the genetic tests of the proband and his parents were performed. A missense mutation (c.616 G>C) in exon 3 of the <i>AVPR2</i> gene of the proband was found, caused by the substitution of amino acid valine to leucine at position 206 [p.Val206Leu], which was a hemizygous mutation and consistent with X-chromosome recessive inheritance. The administration of oral hydrochlorothiazide improves the symptoms of polydipsia and polyuria in the proband. This novel <i>AVPR2</i> gene mutation may be the main cause of NDI in this family, which induces a functional defect in <i>AVPR2</i>, and leads to reduced tubular reabsorption of water.</p>","PeriodicalId":94176,"journal":{"name":"Postgraduate medicine","volume":" ","pages":"683-690"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Postgraduate medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00325481.2024.2383555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/23 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Nephrogenic diabetes insipidus (NDI) is a rare genetic disorder primarily associated with mutations in the arginine vasopressin receptor 2 (AVPR2) gene or the aquaporin 2 (AQP2) gene, resulting in impaired water reabsorption in the renal tubules. This report describes a case of a young male patient with NDI from China with a history of polydipsia and polyuria for over 15 years. Laboratory examinations of the proband indicated low urine-specific gravity and osmolality. Urologic ultrasound revealed severe bilateral hydronephrosis in both kidneys, bilateral dilatation of the ureters, roughness of the bladder wall, and the formation of muscle trabeculae. The diagnosis of diabetes insipidus was confirmed by water deprivation tests. The administration of posterior pituitary hormone did not alter urine-specific gravity, and osmolality remained at a low level (<300 mOsm/kg). Based on these findings, and the genetic tests of the proband and his parents were performed. A missense mutation (c.616 G>C) in exon 3 of the AVPR2 gene of the proband was found, caused by the substitution of amino acid valine to leucine at position 206 [p.Val206Leu], which was a hemizygous mutation and consistent with X-chromosome recessive inheritance. The administration of oral hydrochlorothiazide improves the symptoms of polydipsia and polyuria in the proband. This novel AVPR2 gene mutation may be the main cause of NDI in this family, which induces a functional defect in AVPR2, and leads to reduced tubular reabsorption of water.