Towards inclusive biodesign and innovation: lowering barriers to entry in medical device development through large language model tools.

IF 4.1 Q1 HEALTH CARE SCIENCES & SERVICES BMJ Health & Care Informatics Pub Date : 2024-07-23 DOI:10.1136/bmjhci-2023-100952
John T Moon, Nicholas J Lima, Eleanor Froula, Hanzhou Li, Janice Newsome, Hari Trivedi, Zachary Bercu, Judy Wawira Gichoya
{"title":"Towards inclusive biodesign and innovation: lowering barriers to entry in medical device development through large language model tools.","authors":"John T Moon, Nicholas J Lima, Eleanor Froula, Hanzhou Li, Janice Newsome, Hari Trivedi, Zachary Bercu, Judy Wawira Gichoya","doi":"10.1136/bmjhci-2023-100952","DOIUrl":null,"url":null,"abstract":"<p><p>In the following narrative review, we discuss the potential role of large language models (LLMs) in medical device innovation, specifically examples using generative pretrained transformer-4. Throughout the biodesign process, LLMs can offer prompt-driven insights, aiding problem identification, knowledge assimilation and decision-making. Intellectual property analysis, regulatory assessment and market analysis emerge as key LLM applications. Through case examples, we underscore LLMs' transformative ability to democratise information access and expertise, facilitating inclusive innovation in medical devices as well as its effectiveness with providing real-time, individualised feedback for innovators of all experience levels. By mitigating entry barriers, LLMs accelerate transformative advancements, fostering collaboration among established and emerging stakeholders.</p>","PeriodicalId":9050,"journal":{"name":"BMJ Health & Care Informatics","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11268064/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMJ Health & Care Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/bmjhci-2023-100952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

In the following narrative review, we discuss the potential role of large language models (LLMs) in medical device innovation, specifically examples using generative pretrained transformer-4. Throughout the biodesign process, LLMs can offer prompt-driven insights, aiding problem identification, knowledge assimilation and decision-making. Intellectual property analysis, regulatory assessment and market analysis emerge as key LLM applications. Through case examples, we underscore LLMs' transformative ability to democratise information access and expertise, facilitating inclusive innovation in medical devices as well as its effectiveness with providing real-time, individualised feedback for innovators of all experience levels. By mitigating entry barriers, LLMs accelerate transformative advancements, fostering collaboration among established and emerging stakeholders.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实现包容性生物设计和创新:通过大型语言模型工具降低医疗器械开发的准入门槛。
在下面的叙述性综述中,我们将讨论大型语言模型(LLMs)在医疗设备创新中的潜在作用,特别是使用生成式预训练变压器-4 的实例。在整个生物设计过程中,大型语言模型可以提供及时驱动的见解,帮助发现问题、吸收知识和做出决策。知识产权分析、监管评估和市场分析是 LLM 的主要应用领域。通过案例,我们强调了 LLM 在实现信息获取和专业知识民主化、促进医疗设备包容性创新方面的变革能力,以及它为各种经验水平的创新者提供实时、个性化反馈的有效性。通过降低准入门槛,LLM 加快了变革性进步,促进了既有和新兴利益相关者之间的合作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.10
自引率
4.90%
发文量
40
审稿时长
18 weeks
期刊最新文献
Understanding prescribing errors for system optimisation: the technology-related error mechanism classification. Detection of hypertension from pharyngeal images using deep learning algorithm in primary care settings in Japan. PubMed captures more fine-grained bibliographic data on scientific commentary than Web of Science: a comparative analysis. Method to apply temporal graph analysis on electronic patient record data to explore healthcare professional-patient interaction intensity: a cohort study. Harnessing digital footprint data for population health: a discussion on collaboration, challenges and opportunities in the UK.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1