Zsuzsanna Kolostyak, Dora Bojcsuk, Viktoria Baksa, Zsuzsa Mathene Szigeti, Krisztian Bene, Zsolt Czimmerer, Pal Boto, Lina Fadel, Szilard Poliska, Laszlo Halasz, Petros Tzerpos, Wilhelm K Berger, Andres Villabona-Rueda, Zsofia Varga, Tunde Kovacs, Andreas Patsalos, Attila Pap, Gyorgy Vamosi, Peter Bai, Balazs Dezso, Matthew Spite, Franco R D'Alessio, Istvan Szatmari, Laszlo Nagy
{"title":"EGR2 is an epigenomic regulator of phagocytosis and antifungal immunity in alveolar macrophages.","authors":"Zsuzsanna Kolostyak, Dora Bojcsuk, Viktoria Baksa, Zsuzsa Mathene Szigeti, Krisztian Bene, Zsolt Czimmerer, Pal Boto, Lina Fadel, Szilard Poliska, Laszlo Halasz, Petros Tzerpos, Wilhelm K Berger, Andres Villabona-Rueda, Zsofia Varga, Tunde Kovacs, Andreas Patsalos, Attila Pap, Gyorgy Vamosi, Peter Bai, Balazs Dezso, Matthew Spite, Franco R D'Alessio, Istvan Szatmari, Laszlo Nagy","doi":"10.1172/jci.insight.164009","DOIUrl":null,"url":null,"abstract":"<p><p>Alveolar macrophages (AMs) act as gatekeepers of the lung's immune responses, serving essential roles in recognizing and eliminating pathogens. The transcription factor (TF) early growth response 2 (EGR2) has been recently described as required for mature AMs in mice; however, its mechanisms of action have not been explored. Here, we identified EGR2 as an epigenomic regulator and likely direct proximal transcriptional activator in AMs using epigenomic approaches (RNA sequencing, ATAC sequencing, and CUT&RUN). The predicted direct proximal targets of EGR2 included a subset of AM identity genes and ones related to pathogen recognition, phagosome maturation, and adhesion, such as Clec7a, Atp6v0d2, Itgb2, Rhoc, and Tmsb10. We provided evidence that EGR2 deficiency led to impaired zymosan internalization and reduced the capacity to respond to Aspergillus fumigatus. Mechanistically, the lack of EGR2 altered the transcriptional response, secreted cytokines (i.e., CXCL11), and inflammation-resolving lipid mediators (i.e., RvE1) of AMs during in vivo zymosan-induced inflammation, which manifested in impaired resolution. Our findings demonstrated that EGR2 is a key proximal transcriptional activator and epigenomic bookmark in AMs responsible for select, distinct components of cell identity and a protective transcriptional and epigenomic program against fungi.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11385099/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCI insight","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/jci.insight.164009","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Alveolar macrophages (AMs) act as gatekeepers of the lung's immune responses, serving essential roles in recognizing and eliminating pathogens. The transcription factor (TF) early growth response 2 (EGR2) has been recently described as required for mature AMs in mice; however, its mechanisms of action have not been explored. Here, we identified EGR2 as an epigenomic regulator and likely direct proximal transcriptional activator in AMs using epigenomic approaches (RNA sequencing, ATAC sequencing, and CUT&RUN). The predicted direct proximal targets of EGR2 included a subset of AM identity genes and ones related to pathogen recognition, phagosome maturation, and adhesion, such as Clec7a, Atp6v0d2, Itgb2, Rhoc, and Tmsb10. We provided evidence that EGR2 deficiency led to impaired zymosan internalization and reduced the capacity to respond to Aspergillus fumigatus. Mechanistically, the lack of EGR2 altered the transcriptional response, secreted cytokines (i.e., CXCL11), and inflammation-resolving lipid mediators (i.e., RvE1) of AMs during in vivo zymosan-induced inflammation, which manifested in impaired resolution. Our findings demonstrated that EGR2 is a key proximal transcriptional activator and epigenomic bookmark in AMs responsible for select, distinct components of cell identity and a protective transcriptional and epigenomic program against fungi.
期刊介绍:
JCI Insight is a Gold Open Access journal with a 2022 Impact Factor of 8.0. It publishes high-quality studies in various biomedical specialties, such as autoimmunity, gastroenterology, immunology, metabolism, nephrology, neuroscience, oncology, pulmonology, and vascular biology. The journal focuses on clinically relevant basic and translational research that contributes to the understanding of disease biology and treatment. JCI Insight is self-published by the American Society for Clinical Investigation (ASCI), a nonprofit honor organization of physician-scientists founded in 1908, and it helps fulfill the ASCI's mission to advance medical science through the publication of clinically relevant research reports.