Samantha Smith, Lewis Gaston, Jeffery Beasley, Jim Wang, Josh Padilla, Wenguang Sun
{"title":"Ironstone and red mud barriers to reduce subsurface movement of soil phosphorus","authors":"Samantha Smith, Lewis Gaston, Jeffery Beasley, Jim Wang, Josh Padilla, Wenguang Sun","doi":"10.1002/jeq2.20601","DOIUrl":null,"url":null,"abstract":"<p>Loss of phosphorus in seepage may contribute to eutrophication of downstream water bodies. This study examined the potential use of pedogenic ironstone and untreated red mud (bauxite refining residue) as P sorbents in a permeable reactive barrier (PRB) to mitigate such loss. Effects of ironstone and red mud on P sorption (batch), transport (columns), saturated hydraulic conductivity (<i>K</i><sub>S</sub>), and growth of common bermudagrass (<i>Cynodon dactylon</i>; greenhouse) were examined. Both materials had sorption maxima of ∼30 mmol P kg<sup>−1</sup> or about five times that of a P-enriched sandy soil; however, sorption by red mud greatly increased with decreasing pH. Transport of P through columns of ironstone and red mud (diluted with nonreactive sand) was similar and slower compared to soil + sand. However, when red mud was mixed with soil, increased sorption at lower pH resulted in greater P retention compared to ironstone + soil (76% vs. 13%). Although addition of ironstone to soil up to 20% did not reduce <i>K</i><sub>S</sub>, red mud at even 5% did. Soil amendment with red mud increased bermudagrass growth and P uptake. Given long-term neutralization of red mud in an acidic soil and increased P sorption, it may be suitable in a PRB if incorporated at a low rate and/or co-incorporated with a coarser material.</p>","PeriodicalId":15732,"journal":{"name":"Journal of environmental quality","volume":"53 5","pages":"758-766"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of environmental quality","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jeq2.20601","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Loss of phosphorus in seepage may contribute to eutrophication of downstream water bodies. This study examined the potential use of pedogenic ironstone and untreated red mud (bauxite refining residue) as P sorbents in a permeable reactive barrier (PRB) to mitigate such loss. Effects of ironstone and red mud on P sorption (batch), transport (columns), saturated hydraulic conductivity (KS), and growth of common bermudagrass (Cynodon dactylon; greenhouse) were examined. Both materials had sorption maxima of ∼30 mmol P kg−1 or about five times that of a P-enriched sandy soil; however, sorption by red mud greatly increased with decreasing pH. Transport of P through columns of ironstone and red mud (diluted with nonreactive sand) was similar and slower compared to soil + sand. However, when red mud was mixed with soil, increased sorption at lower pH resulted in greater P retention compared to ironstone + soil (76% vs. 13%). Although addition of ironstone to soil up to 20% did not reduce KS, red mud at even 5% did. Soil amendment with red mud increased bermudagrass growth and P uptake. Given long-term neutralization of red mud in an acidic soil and increased P sorption, it may be suitable in a PRB if incorporated at a low rate and/or co-incorporated with a coarser material.
期刊介绍:
Articles in JEQ cover various aspects of anthropogenic impacts on the environment, including agricultural, terrestrial, atmospheric, and aquatic systems, with emphasis on the understanding of underlying processes. To be acceptable for consideration in JEQ, a manuscript must make a significant contribution to the advancement of knowledge or toward a better understanding of existing concepts. The study should define principles of broad applicability, be related to problems over a sizable geographic area, or be of potential interest to a representative number of scientists. Emphasis is given to the understanding of underlying processes rather than to monitoring.
Contributions are accepted from all disciplines for consideration by the editorial board. Manuscripts may be volunteered, invited, or coordinated as a special section or symposium.