Jae-Yeon Hwang, Yisak Kim, Jisun Hwang, Yehyun Suh, Sook Min Hwang, Hyeyun Lee, Minsu Park
{"title":"Deep learning-based fully automatic Risser stage assessment model using abdominal radiographs.","authors":"Jae-Yeon Hwang, Yisak Kim, Jisun Hwang, Yehyun Suh, Sook Min Hwang, Hyeyun Lee, Minsu Park","doi":"10.1007/s00247-024-05999-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Artificial intelligence has been increasingly used in medical imaging and has demonstrated expert level performance in image classification tasks.</p><p><strong>Objective: </strong>To develop a fully automatic approach for determining the Risser stage using deep learning on abdominal radiographs.</p><p><strong>Materials and methods: </strong>In this multicenter study, 1,681 supine abdominal radiographs (age range, 9-18 years, 50% female) obtained between January 2019 and April 2022 were collected retrospectively from three medical institutions and graded manually using the United States Risser staging system. A total of 1,577 images from Hospitals 1 and 2 were used for development, and 104 images from Hospital 3 for external validation. From each radiograph, right and left iliac crest patch images were extracted using the pelvic bone segmentation model DeepLabv3 + with the EfficientNet-B0 encoder trained with 90 digitally reconstructed radiographs from pelvic computed tomography scans with a pelvic bone mask. Using these patch images, ConvNeXt-B was trained to grade according to the Risser classification. The model's performance was evaluated using accuracy, area under the receiver operating characteristic curve (AUROC), and mean absolute error.</p><p><strong>Results: </strong>The fully automatic Risser stage assessment model showed an accuracy of 0.87 and 0.75, mean absolute error of 0.13 and 0.26, and AUROC of 0.99 and 0.95 on internal and external test sets, respectively.</p><p><strong>Conclusion: </strong>We developed a deep learning-based, fully automatic segmentation and classification model for Risser stage assessment using abdominal radiographs.</p>","PeriodicalId":19755,"journal":{"name":"Pediatric Radiology","volume":" ","pages":"1692-1703"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pediatric Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00247-024-05999-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PEDIATRICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Artificial intelligence has been increasingly used in medical imaging and has demonstrated expert level performance in image classification tasks.
Objective: To develop a fully automatic approach for determining the Risser stage using deep learning on abdominal radiographs.
Materials and methods: In this multicenter study, 1,681 supine abdominal radiographs (age range, 9-18 years, 50% female) obtained between January 2019 and April 2022 were collected retrospectively from three medical institutions and graded manually using the United States Risser staging system. A total of 1,577 images from Hospitals 1 and 2 were used for development, and 104 images from Hospital 3 for external validation. From each radiograph, right and left iliac crest patch images were extracted using the pelvic bone segmentation model DeepLabv3 + with the EfficientNet-B0 encoder trained with 90 digitally reconstructed radiographs from pelvic computed tomography scans with a pelvic bone mask. Using these patch images, ConvNeXt-B was trained to grade according to the Risser classification. The model's performance was evaluated using accuracy, area under the receiver operating characteristic curve (AUROC), and mean absolute error.
Results: The fully automatic Risser stage assessment model showed an accuracy of 0.87 and 0.75, mean absolute error of 0.13 and 0.26, and AUROC of 0.99 and 0.95 on internal and external test sets, respectively.
Conclusion: We developed a deep learning-based, fully automatic segmentation and classification model for Risser stage assessment using abdominal radiographs.
期刊介绍:
Official Journal of the European Society of Pediatric Radiology, the Society for Pediatric Radiology and the Asian and Oceanic Society for Pediatric Radiology
Pediatric Radiology informs its readers of new findings and progress in all areas of pediatric imaging and in related fields. This is achieved by a blend of original papers, complemented by reviews that set out the present state of knowledge in a particular area of the specialty or summarize specific topics in which discussion has led to clear conclusions. Advances in technology, methodology, apparatus and auxiliary equipment are presented, and modifications of standard techniques are described.
Manuscripts submitted for publication must contain a statement to the effect that all human studies have been reviewed by the appropriate ethics committee and have therefore been performed in accordance with the ethical standards laid down in an appropriate version of the 1964 Declaration of Helsinki. It should also be stated clearly in the text that all persons gave their informed consent prior to their inclusion in the study. Details that might disclose the identity of the subjects under study should be omitted.