Multiple hERG channel blocking pathways: implications for macromolecules.

IF 13.9 1区 医学 Q1 PHARMACOLOGY & PHARMACY Trends in pharmacological sciences Pub Date : 2024-08-01 Epub Date: 2024-07-22 DOI:10.1016/j.tips.2024.06.003
Bernd J Zünkler
{"title":"Multiple hERG channel blocking pathways: implications for macromolecules.","authors":"Bernd J Zünkler","doi":"10.1016/j.tips.2024.06.003","DOIUrl":null,"url":null,"abstract":"<p><p>Numerous non-cardiovascular drugs have a potential to induce life-threatening torsades de pointes (TdP) ventricular cardiac arrhythmias by blocking human ether-à-go-go-related gene (hERG) currents via binding to the channel's inner cavity. Identification of the hERG current-inhibiting properties of candidate drugs is performed focusing on binding sites in the channel pore. It has been suggested that biologicals have a low likelihood of hERG current inhibition, since their poor diffusion across the plasma membrane prevents them from reaching the binding site in the channel pore. However, biologicals could influence hERG channel function by binding to 'unconventional' noncanonical binding sites. This Opinion gives an overview on noncanonical blockers of hERG channels that might be of relevance for the assessment of the possible torsadogenic potential of macromolecular therapeutics.</p>","PeriodicalId":23250,"journal":{"name":"Trends in pharmacological sciences","volume":" ","pages":"671-677"},"PeriodicalIF":13.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in pharmacological sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tips.2024.06.003","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Numerous non-cardiovascular drugs have a potential to induce life-threatening torsades de pointes (TdP) ventricular cardiac arrhythmias by blocking human ether-à-go-go-related gene (hERG) currents via binding to the channel's inner cavity. Identification of the hERG current-inhibiting properties of candidate drugs is performed focusing on binding sites in the channel pore. It has been suggested that biologicals have a low likelihood of hERG current inhibition, since their poor diffusion across the plasma membrane prevents them from reaching the binding site in the channel pore. However, biologicals could influence hERG channel function by binding to 'unconventional' noncanonical binding sites. This Opinion gives an overview on noncanonical blockers of hERG channels that might be of relevance for the assessment of the possible torsadogenic potential of macromolecular therapeutics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多种 hERG 通道阻断途径:对大分子的影响。
许多非心血管药物通过与通道内腔结合阻断人ether-à-go-go相关基因(hERG)电流,从而有可能诱发危及生命的室性心律失常(TdP)。对候选药物的 hERG 电流抑制特性进行鉴定的重点是通道孔中的结合位点。有人认为,生物制剂抑制 hERG 电流的可能性较低,因为它们在质膜上的扩散能力较差,无法到达通道孔中的结合位点。然而,生物制剂可能会通过与 "非常规 "的非规范结合位点结合来影响 hERG 通道的功能。本观点概述了 hERG 通道的非典型阻断剂,这些阻断剂可能与评估大分子治疗药物的致扭潜力有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
23.90
自引率
0.70%
发文量
132
审稿时长
6-12 weeks
期刊介绍: Trends in Pharmacological Sciences (TIPS) is a monthly peer-reviewed reviews journal that focuses on a wide range of topics in pharmacology, pharmacy, pharmaceutics, and toxicology. Launched in 1979, TIPS publishes concise articles discussing the latest advancements in pharmacology and therapeutics research. The journal encourages submissions that align with its core themes while also being open to articles on the biopharma regulatory landscape, science policy and regulation, and bioethics. Each issue of TIPS provides a platform for experts to share their insights and perspectives on the most exciting developments in the field. Through rigorous peer review, the journal ensures the quality and reliability of published articles. Authors are invited to contribute articles that contribute to the understanding of pharmacology and its applications in various domains. Whether it's exploring innovative drug therapies or discussing the ethical considerations of pharmaceutical research, TIPS provides a valuable resource for researchers, practitioners, and policymakers in the pharmacological sciences.
期刊最新文献
Therapeutic potential of cannabidiol polypharmacology in neuropsychiatric disorders. Advances in the structural understanding of opioid allostery. IRAK4: potential therapeutic target for airway disease exacerbations. Protein prenylation in mechanotransduction: implications for disease and therapy. Tension-induced organelle stress: an emerging target in fibrosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1