Mingquan Zhu, Peng Zhang, Feng Gao, Yunxiang Bai, Hui Zhang, Min Zu, Luqi Liu and Zhong Zhang
{"title":"Advanced lightweight lightning strike protection composites based on super-aligned carbon nanotube films and thermal-resistant zirconia fibers†","authors":"Mingquan Zhu, Peng Zhang, Feng Gao, Yunxiang Bai, Hui Zhang, Min Zu, Luqi Liu and Zhong Zhang","doi":"10.1039/D4NA00392F","DOIUrl":null,"url":null,"abstract":"<p >Carbon nanotube films have drawn attention in the past decade as promising substitutes for aluminum or copper used in aircraft lightning strike protection (LSP) systems. Throughout this study, advanced lightweight lightning strike protection (LSP) composites are based on highly conductive super-aligned carbon nanotube films (SA-CNTFs) and a new isolation layer of zirconia fiber paper. The internal damage level of the composite laminate was assessed using a microfocus X-ray system and non-destructive ultrasonic techniques. Results show that the composite laminate comprising SA-CNTFs (1000-layer) and zirconia fiber paper (1-layer) effectively shields CFRP from 100 kA lightning strikes. Furthermore, weight reductions of approximately 44.3% and 10.4% can be achieved, respectively, relative to the isolation layer of glass fibers and quartz fibers. Meanwhile, the lightning protection mechanism was further studied.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/na/d4na00392f?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/na/d4na00392f","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon nanotube films have drawn attention in the past decade as promising substitutes for aluminum or copper used in aircraft lightning strike protection (LSP) systems. Throughout this study, advanced lightweight lightning strike protection (LSP) composites are based on highly conductive super-aligned carbon nanotube films (SA-CNTFs) and a new isolation layer of zirconia fiber paper. The internal damage level of the composite laminate was assessed using a microfocus X-ray system and non-destructive ultrasonic techniques. Results show that the composite laminate comprising SA-CNTFs (1000-layer) and zirconia fiber paper (1-layer) effectively shields CFRP from 100 kA lightning strikes. Furthermore, weight reductions of approximately 44.3% and 10.4% can be achieved, respectively, relative to the isolation layer of glass fibers and quartz fibers. Meanwhile, the lightning protection mechanism was further studied.