Design, Synthesis, Cytotoxicity Profiling, Molecular Docking and ADMET Studies of Novel Functionalized Coumarin-Pyrazole-Thiazole Hybrids: Cyclization of Chromonyl Thiazolyl Pyrazolyl Thiosemicarbazone with α-Halocarbonyl Reagents

IF 1.7 3区 化学 Q3 CHEMISTRY, ORGANIC Current Organic Chemistry Pub Date : 2024-07-22 DOI:10.2174/0113852728316450240702075812
Tarik E. Ali, Ayat K. Alsolimani, Mohammed A. Assiri, Ali A. Shati, Mohammad Y. Alfaifi, Serag E. I. Elbehairi
{"title":"Design, Synthesis, Cytotoxicity Profiling, Molecular Docking and ADMET Studies of Novel Functionalized Coumarin-Pyrazole-Thiazole Hybrids: Cyclization of Chromonyl Thiazolyl Pyrazolyl Thiosemicarbazone with α-Halocarbonyl Reagents","authors":"Tarik E. Ali, Ayat K. Alsolimani, Mohammed A. Assiri, Ali A. Shati, Mohammad Y. Alfaifi, Serag E. I. Elbehairi","doi":"10.2174/0113852728316450240702075812","DOIUrl":null,"url":null,"abstract":": A simple synthetic method was performed to design a novel series of polycyclic systems consisting of a coumarin-pyrazole-thiazole skeleton linked with a completed thiazole ring via hydrazone linkage. The methodology depended on the cyclization of the active precursor 2-[(3-(2-oxo-2H-chromen-3-yl)-1-(4- phenylthiazol-2-yl)-1H-pyrazol-4-yl)methy-lene]hydrazine-1-carbothioamide (2) by its reaction with a series of α-halocarbonyl reagents under Hantzsch reaction conditions. The spectral and analytical data confirmed the structures of all the synthesized compounds. The target compounds were screened for their in vitro anticancer activity. The cytotoxic effects of obtained compound were screened against cancer cell lines (MCF-7, HepG2, and HCT116) using the standard SRB method. Furthermore, products 4, 5, and 7b were the most active against all cancer cell lines, compared with Doxorubicin. These bioactive products effectively suppress the growth of cancer cells by activating the cell death program through late apoptosis. In addition, products 4 and 5 arrested the cell cycle at the S and G2 phases, while product 7b has the ability to arrest the cell cycle at the G2 phase against all three cancer cells. The molecular docking of the products 4, 5, and 7b showed good binding affinities with Cyclin-dependent kinase 8 (CDK-8), while the ADMET prediction supported that these bioactive products can be promising anticancer agents.","PeriodicalId":10926,"journal":{"name":"Current Organic Chemistry","volume":"47 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0113852728316450240702075812","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

: A simple synthetic method was performed to design a novel series of polycyclic systems consisting of a coumarin-pyrazole-thiazole skeleton linked with a completed thiazole ring via hydrazone linkage. The methodology depended on the cyclization of the active precursor 2-[(3-(2-oxo-2H-chromen-3-yl)-1-(4- phenylthiazol-2-yl)-1H-pyrazol-4-yl)methy-lene]hydrazine-1-carbothioamide (2) by its reaction with a series of α-halocarbonyl reagents under Hantzsch reaction conditions. The spectral and analytical data confirmed the structures of all the synthesized compounds. The target compounds were screened for their in vitro anticancer activity. The cytotoxic effects of obtained compound were screened against cancer cell lines (MCF-7, HepG2, and HCT116) using the standard SRB method. Furthermore, products 4, 5, and 7b were the most active against all cancer cell lines, compared with Doxorubicin. These bioactive products effectively suppress the growth of cancer cells by activating the cell death program through late apoptosis. In addition, products 4 and 5 arrested the cell cycle at the S and G2 phases, while product 7b has the ability to arrest the cell cycle at the G2 phase against all three cancer cells. The molecular docking of the products 4, 5, and 7b showed good binding affinities with Cyclin-dependent kinase 8 (CDK-8), while the ADMET prediction supported that these bioactive products can be promising anticancer agents.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新型功能化香豆素-吡唑-噻唑杂化物的设计、合成、细胞毒性分析、分子对接和 ADMET 研究:铬酰基噻唑基吡唑基硫代氨基甲酸唑酮与α-卤代羰基试剂的环化反应
:采用一种简单的合成方法设计了一系列新型多环系统,这些系统由香豆素-吡唑-噻唑骨架和通过腙连接的完整噻唑环组成。该方法依赖于活性前体 2-[(3-(2-氧代-2H-苯并吡喃-3-基)-1-(4-苯基噻唑-2-基)-1H-吡唑-4-基)甲基-烯]肼-1-硫代甲酰胺(2)在汉茨赫反应条件下与一系列 α-卤代羰基试剂的环化反应。光谱和分析数据证实了所有合成化合物的结构。对目标化合物进行了体外抗癌活性筛选。采用标准 SRB 方法筛选了所获化合物对癌细胞株(MCF-7、HepG2 和 HCT116)的细胞毒性作用。此外,与多柔比星相比,产品 4、5 和 7b 对所有癌细胞株的活性最高。这些生物活性产品通过晚期细胞凋亡激活了细胞死亡程序,从而有效抑制了癌细胞的生长。此外,产品 4 和 5 能使细胞周期停滞在 S 期和 G2 期,而产品 7b 则能使细胞周期停滞在 G2 期,对所有三种癌细胞都有抑制作用。产品 4、5 和 7b 与细胞周期蛋白依赖性激酶 8(CDK-8)的分子对接显示出良好的结合亲和力,而 ADMET 预测支持这些生物活性产品可成为有前景的抗癌剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Organic Chemistry
Current Organic Chemistry 化学-有机化学
CiteScore
3.70
自引率
7.70%
发文量
76
审稿时长
1 months
期刊介绍: Current Organic Chemistry aims to provide in-depth/mini reviews on the current progress in various fields related to organic chemistry including bioorganic chemistry, organo-metallic chemistry, asymmetric synthesis, heterocyclic chemistry, natural product chemistry, catalytic and green chemistry, suitable aspects of medicinal chemistry and polymer chemistry, as well as analytical methods in organic chemistry. The frontier reviews provide the current state of knowledge in these fields and are written by chosen experts who are internationally known for their eminent research contributions. The Journal also accepts high quality research papers focusing on hot topics, highlights and letters besides thematic issues in these fields. Current Organic Chemistry should prove to be of great interest to organic chemists in academia and industry, who wish to keep abreast with recent developments in key fields of organic chemistry.
期刊最新文献
A Novel Family of Selenazolo[3,2-a]pyridinium Derivatives Based on Annulation Reactions and Comparative Analysis of Antimicrobial Activity of the Selenium and Sulfur Analogs of Chalcogenazolo[3,2-a]pyridiniums Exploring the Potential of Novel 4-Thiazolidinone Derivatives as Dual Anti-inflammatory and Antioxidant Agents: Synthesis, Pharmacological Activity and Docking Analysis 3,4-Dihydropyrimidine-2(1H)-one/thione Derivatives as Anti-inflammatory and Antioxidant Agents: Synthesis, Biological Activity, and Docking Studies Di-tert-butyl Peroxide (DTBP)-Promoted Heterocyclic Ring Construction A New Route for the Synthesis of Trichloromethyl-1H-Benzo[d]imidazole and (1,2,3- Triazol)-1H-Benzo[d]imidazole Derivatives via Copper-Catalyzed N-Arylation and Huisgen Reactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1