MU-MIMO Beamforming With Limited Channel Data Samples

Shaoran Li;Nan Jiang;Yongce Chen;Weijun Xie;Wenjing Lou;Y. Thomas Hou
{"title":"MU-MIMO Beamforming With Limited Channel Data Samples","authors":"Shaoran Li;Nan Jiang;Yongce Chen;Weijun Xie;Wenjing Lou;Y. Thomas Hou","doi":"10.1109/JSAC.2024.3431515","DOIUrl":null,"url":null,"abstract":"Channel State Information (CSI) is a critical piece of information for MU-MIMO beamforming. However, CSI estimation errors are inevitable in practice. The random and uncertain nature of CSI estimation errors poses significant challenges to MU-MIMO beamforming. State-of-the-art works addressing such a CSI uncertainty can be categorized into model-based and data-driven works, both of which have limitations when providing a performance guarantee to the users. In contrast, this paper presents Limited Sample-based Beamforming (LSBF)—a novel approach to MU-MIMO beamforming that only uses a limited number of CSI data samples (without assuming any knowledge of channel distributions). Thanks to the use of CSI data samples, LSBF enjoys flexibility similar to data-driven approaches and can provide a theoretical guarantee to the users—a major strength of model-based approaches. To achieve both, LSBF employs chance-constrained programming (CCP) and utilizes the \n<inline-formula> <tex-math>$\\infty $ </tex-math></inline-formula>\n-Wasserstein ambiguity set to bridge the unknown CSI distribution with limited CSI samples. Through problem decomposition and a novel bilevel formulation for each subproblem based on limited CSI data samples, LSBF solves each subproblem with a binary search and convex approximation. We show that LSBF significantly improves the network performance while providing a probabilistic data rate guarantee to the users.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":"42 11","pages":"3032-3047"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10605779/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Channel State Information (CSI) is a critical piece of information for MU-MIMO beamforming. However, CSI estimation errors are inevitable in practice. The random and uncertain nature of CSI estimation errors poses significant challenges to MU-MIMO beamforming. State-of-the-art works addressing such a CSI uncertainty can be categorized into model-based and data-driven works, both of which have limitations when providing a performance guarantee to the users. In contrast, this paper presents Limited Sample-based Beamforming (LSBF)—a novel approach to MU-MIMO beamforming that only uses a limited number of CSI data samples (without assuming any knowledge of channel distributions). Thanks to the use of CSI data samples, LSBF enjoys flexibility similar to data-driven approaches and can provide a theoretical guarantee to the users—a major strength of model-based approaches. To achieve both, LSBF employs chance-constrained programming (CCP) and utilizes the $\infty $ -Wasserstein ambiguity set to bridge the unknown CSI distribution with limited CSI samples. Through problem decomposition and a novel bilevel formulation for each subproblem based on limited CSI data samples, LSBF solves each subproblem with a binary search and convex approximation. We show that LSBF significantly improves the network performance while providing a probabilistic data rate guarantee to the users.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用有限信道数据样本的多路多输入多输出波束成形
信道状态信息(CSI)是 MU-MIMO 波束成形的关键信息。然而,CSI 估计误差在实践中是不可避免的。CSI 估计误差的随机性和不确定性给 MU-MIMO 波束成形带来了巨大挑战。解决这种 CSI 不确定性的最先进技术可分为基于模型的技术和数据驱动的技术,这两种技术在为用户提供性能保证时都有局限性。与此相反,本文提出了基于有限样本的波束成形(LSBF)--一种新颖的多路多输入多输出波束成形方法,它只使用有限数量的 CSI 数据样本(不假定任何信道分布知识)。由于使用了 CSI 数据样本,LSBF 具有与数据驱动方法类似的灵活性,并能为用户提供理论保证--这是基于模型方法的主要优势。为了实现这两点,LSBF 采用了机会约束编程(CCP),并利用 $\infty $ -Wasserstein 模糊集来弥合 CSI 样本有限的未知 CSI 分布。基于有限的 CSI 数据样本,LSBF 对每个子问题进行了问题分解和新颖的双层表述,并通过二元搜索和凸近似解决了每个子问题。我们的研究表明,LSBF 能显著提高网络性能,同时为用户提供概率数据速率保证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents IEEE Journal on Selected Areas in Communications Publication Information Guest Editorial Integrated Ground-Air-Space Wireless Networks for 6G Mobile—Part I IEEE Communications Society Information IEEE Open Access Publishing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1