Stochastic Long-Term Energy Optimization in Digital Twin-Assisted Heterogeneous Edge Networks

Yingsheng Peng;Jingpu Duan;Jinbei Zhang;Weichao Li;Yong Liu;Fuli Jiang
{"title":"Stochastic Long-Term Energy Optimization in Digital Twin-Assisted Heterogeneous Edge Networks","authors":"Yingsheng Peng;Jingpu Duan;Jinbei Zhang;Weichao Li;Yong Liu;Fuli Jiang","doi":"10.1109/JSAC.2024.3431581","DOIUrl":null,"url":null,"abstract":"Mobile edge computing (MEC) and digital twin (DT) technologies have been recognized as key enabling factors for the next generation of industrial Internet of Things (IoT) applications. In existing works, DT-assisted edge network resource optimization solutions mostly focus on short-term performance optimization, and long-term resource optimization has not been well studied. Thus, this paper introduces a digital twin-assisted heterogeneous edge network (DTHEN), aiming to minimize long-term energy consumption by jointly optimizing transmit power and computing resource. To solve the stochastic optimization problem, we propose a long-term queue-aware energy minimization (LQEM) scheme for joint communication and computing resource management. The proposed scheme uses Lyapunov optimization to transform the original problem with long-term time constraints into a deterministic upper bound problem for each time slot, decouples it into three independent sub-problems, and solves each sub-problem separately. We then theoretically prove the asymptotic optimality of the LQEM scheme and the tradeoff between system energy consumption and task queue backlog. Finally, experimental results verify the performance analysis of the LQEM scheme, demonstrating its superiority over several benchmark schemes, and reveal the impact of various parameters on the system.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":"42 11","pages":"3157-3171"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10606013/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mobile edge computing (MEC) and digital twin (DT) technologies have been recognized as key enabling factors for the next generation of industrial Internet of Things (IoT) applications. In existing works, DT-assisted edge network resource optimization solutions mostly focus on short-term performance optimization, and long-term resource optimization has not been well studied. Thus, this paper introduces a digital twin-assisted heterogeneous edge network (DTHEN), aiming to minimize long-term energy consumption by jointly optimizing transmit power and computing resource. To solve the stochastic optimization problem, we propose a long-term queue-aware energy minimization (LQEM) scheme for joint communication and computing resource management. The proposed scheme uses Lyapunov optimization to transform the original problem with long-term time constraints into a deterministic upper bound problem for each time slot, decouples it into three independent sub-problems, and solves each sub-problem separately. We then theoretically prove the asymptotic optimality of the LQEM scheme and the tradeoff between system energy consumption and task queue backlog. Finally, experimental results verify the performance analysis of the LQEM scheme, demonstrating its superiority over several benchmark schemes, and reveal the impact of various parameters on the system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数字双胞胎辅助异构边缘网络中的随机长期能量优化
移动边缘计算(MEC)和数字孪生(DT)技术已被视为下一代工业物联网(IoT)应用的关键使能因素。在现有著作中,DT 辅助边缘网络资源优化解决方案大多侧重于短期性能优化,而长期资源优化尚未得到很好的研究。因此,本文介绍了一种数字孪生辅助异构边缘网络(DTHEN),旨在通过联合优化发射功率和计算资源,最大限度地降低长期能耗。为解决随机优化问题,我们提出了一种用于联合通信和计算资源管理的长期队列感知能量最小化(LQEM)方案。该方案利用李亚普诺夫优化法将具有长期时间约束的原始问题转化为每个时隙的确定性上界问题,将其解耦为三个独立的子问题,并分别解决每个子问题。然后,我们从理论上证明了 LQEM 方案的渐进最优性,以及系统能耗和任务队列积压之间的权衡。最后,实验结果验证了 LQEM 方案的性能分析,证明其优于多个基准方案,并揭示了各种参数对系统的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents IEEE Journal on Selected Areas in Communications Publication Information Guest Editorial Integrated Ground-Air-Space Wireless Networks for 6G Mobile—Part I IEEE Communications Society Information IEEE Open Access Publishing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1