Unravelling the UV/H2O2 process using bioelectrochemically synthesized H2O2 to reuse waste nutrient solution

IF 10.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL npj Clean Water Pub Date : 2024-07-23 DOI:10.1038/s41545-024-00363-0
Joo-Youn Nam, Hyunji Eom, Uijeong Han, Eunjin Jwa, Hyojeon Kim, SeungYeob Han, Seoktae Kang, Si-Kyung Cho
{"title":"Unravelling the UV/H2O2 process using bioelectrochemically synthesized H2O2 to reuse waste nutrient solution","authors":"Joo-Youn Nam, Hyunji Eom, Uijeong Han, Eunjin Jwa, Hyojeon Kim, SeungYeob Han, Seoktae Kang, Si-Kyung Cho","doi":"10.1038/s41545-024-00363-0","DOIUrl":null,"url":null,"abstract":"In this study, waste nutrient solution (WNS) was used as a catholyte in a bioelectrochemical cell to directly produce hydrogen peroxide (H2O2), after which the H2O2- containing WNS was integrated with the downstream UV oxidation process to meet quality standards for reuse. The generated current in the bioelectrochemical cell was successfully utilized at the cathode to produce H2O2 in WNS using a two-electron oxygen reduction reaction with different reaction times. The cathodic reaction time with the highest H2O2 production (504 ± 5.2 mg l−1) was 48 h, followed by that obtained from 24 h (368 ± 4.1 mg l−1), 12 h (158.8 ± 2.4 mg l−1), and 6 h (121.1 ± 4.1 mg l−1) reaction times. During H2O2 generation, calcium, magnesium, and phosphate in the WNS were recovered in the form of precipitates under alkaline conditions. The H2O2-containing WNS was further treated with different UV doses. After UV/H2O2 treatment, excitation-emission matrix and molecular weight distribution analyses demonstrated that aromatic compounds were reduced. Moreover, the gene expressions of sul1 (up to 95.65%), tetG (up to 93.88%), and aadA (up to 95.32%) were clearly downregulated compared with those of a control sample. Finally, a high disinfection efficiency was achieved with higher UV doses, resulting in successful seed germination. Thus, our results indicate that the developed method can be a promising process for reusing WNS in hydroponic systems.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":null,"pages":null},"PeriodicalIF":10.4000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00363-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41545-024-00363-0","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, waste nutrient solution (WNS) was used as a catholyte in a bioelectrochemical cell to directly produce hydrogen peroxide (H2O2), after which the H2O2- containing WNS was integrated with the downstream UV oxidation process to meet quality standards for reuse. The generated current in the bioelectrochemical cell was successfully utilized at the cathode to produce H2O2 in WNS using a two-electron oxygen reduction reaction with different reaction times. The cathodic reaction time with the highest H2O2 production (504 ± 5.2 mg l−1) was 48 h, followed by that obtained from 24 h (368 ± 4.1 mg l−1), 12 h (158.8 ± 2.4 mg l−1), and 6 h (121.1 ± 4.1 mg l−1) reaction times. During H2O2 generation, calcium, magnesium, and phosphate in the WNS were recovered in the form of precipitates under alkaline conditions. The H2O2-containing WNS was further treated with different UV doses. After UV/H2O2 treatment, excitation-emission matrix and molecular weight distribution analyses demonstrated that aromatic compounds were reduced. Moreover, the gene expressions of sul1 (up to 95.65%), tetG (up to 93.88%), and aadA (up to 95.32%) were clearly downregulated compared with those of a control sample. Finally, a high disinfection efficiency was achieved with higher UV doses, resulting in successful seed germination. Thus, our results indicate that the developed method can be a promising process for reusing WNS in hydroponic systems.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用生物电化学合成的 H2O2 揭开紫外线/H2O2 过程的神秘面纱,重新利用废弃营养液
在这项研究中,废弃营养液(WNS)被用作生物电化学电池中的阴极溶液,直接产生过氧化氢(H2O2),然后将含有 H2O2- 的 WNS 与下游的紫外线氧化过程结合起来,以达到重复使用的质量标准。生物电化学电池中产生的电流被成功地用于阴极,利用双电子氧还原反应在 WNS 中产生 H2O2,反应时间各不相同。H2O2 生成量最高(504 ± 5.2 mg l-1)的阴极反应时间是 48 小时,其次是 24 小时(368 ± 4.1 mg l-1)、12 小时(158.8 ± 2.4 mg l-1)和 6 小时(121.1 ± 4.1 mg l-1)。在生成 H2O2 的过程中,WNS 中的钙、镁和磷酸盐在碱性条件下以沉淀物的形式回收。含有 H2O2 的 WNS 会进一步经过不同剂量的紫外线处理。紫外线/H2O2 处理后,激发-发射矩阵和分子量分布分析表明芳香族化合物减少了。此外,与对照样本相比,sul1(高达 95.65%)、tetG(高达 93.88%)和 aadA(高达 95.32%)的基因表达明显下调。最后,紫外线剂量越大,消毒效率越高,种子萌发越成功。因此,我们的研究结果表明,所开发的方法是在水培系统中重复使用 WNS 的一种可行方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Clean Water
npj Clean Water Environmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍: npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.
期刊最新文献
Bacterial cellulose-graphene oxide composite membranes with enhanced fouling resistance for bio-effluents management Training caretakers to clean community wells is a highly cost-effective way to reduce exposure to coliform bacteria Uncovering pathway and mechanism of simultaneous thiocyanate detoxicity and nitrate removal through anammox and denitrification Author Correction: The enhancement of anammox by graphene-based and iron-based nanomaterials in performance and mechanisms Assessing the influence of environmental variables on energy efficiency changes in the provision of drinking water services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1