{"title":"CACTI: an in silico chemical analysis tool through the integration of chemogenomic data and clustering analysis","authors":"Karla P. Godinez-Macias, Elizabeth A. Winzeler","doi":"10.1186/s13321-024-00885-2","DOIUrl":null,"url":null,"abstract":"<div><p>It is well-accepted that knowledge of a small molecule’s target can accelerate optimization. Although chemogenomic databases are helpful resources for predicting or finding compound interaction partners, they tend to be limited and poorly annotated. Furthermore, unlike genes, compound identifiers are often not standardized, and many synonyms may exist, especially in the biological literature, making batch analysis of compounds difficult. Here, we constructed an open-source annotation and target hypothesis prediction tool that explores some of the largest chemical and biological databases, mining these for both common name, synonyms, and structurally similar molecules. We used this Chemical Analysis and Clustering for Target Identification (CACTI) tool to analyze the Pathogen Box collection, an open-source set of 400 drug-like compounds active against a variety of microbial pathogens. Our analysis resulted in 4,315 new synonyms, 35,963 pieces of new information and target prediction hints for 58 members.</p><p><b>Scientific contributions</b></p><p>With the employment of this tool, a comprehensive report with known evidence, close analogs and drug-target prediction can be obtained for large-scale chemical libraries that will facilitate their evaluation and future target validation and optimization efforts.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00885-2","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00885-2","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
It is well-accepted that knowledge of a small molecule’s target can accelerate optimization. Although chemogenomic databases are helpful resources for predicting or finding compound interaction partners, they tend to be limited and poorly annotated. Furthermore, unlike genes, compound identifiers are often not standardized, and many synonyms may exist, especially in the biological literature, making batch analysis of compounds difficult. Here, we constructed an open-source annotation and target hypothesis prediction tool that explores some of the largest chemical and biological databases, mining these for both common name, synonyms, and structurally similar molecules. We used this Chemical Analysis and Clustering for Target Identification (CACTI) tool to analyze the Pathogen Box collection, an open-source set of 400 drug-like compounds active against a variety of microbial pathogens. Our analysis resulted in 4,315 new synonyms, 35,963 pieces of new information and target prediction hints for 58 members.
Scientific contributions
With the employment of this tool, a comprehensive report with known evidence, close analogs and drug-target prediction can be obtained for large-scale chemical libraries that will facilitate their evaluation and future target validation and optimization efforts.
期刊介绍:
Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling.
Coverage includes, but is not limited to:
chemical information systems, software and databases, and molecular modelling,
chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases,
computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.