Jin Zeng, Qingpeng Zhu, Tongxuan Tian, Wenxiu Sun, Lin Zhang, Shengjie Zhao
{"title":"Deep Unrolled Weighted Graph Laplacian Regularization for Depth Completion","authors":"Jin Zeng, Qingpeng Zhu, Tongxuan Tian, Wenxiu Sun, Lin Zhang, Shengjie Zhao","doi":"10.1007/s11263-024-02188-3","DOIUrl":null,"url":null,"abstract":"<p>Depth completion aims to estimate dense depth images from sparse depth measurements with RGB image guidance. However, previous approaches have not fully considered sparse input fidelity, resulting in inconsistency with sparse input and poor robustness to input corruption. In this paper, we propose the deep unrolled Weighted Graph Laplacian Regularization (WGLR) for depth completion which enhances input fidelity and noise robustness by enforcing input constraints in the network design. Specifically, we assume graph Laplacian regularization as the prior for depth completion optimization and derive the WGLR solution by interpreting the depth map as the discrete counterpart of continuous manifold, enabling analysis in continuous domain and enforcing input consistency. Based on its anisotropic diffusion interpretation, we unroll the WGLR solution into iterative filtering for efficient implementation. Furthermore, we integrate the unrolled WGLR into deep learning framework to develop high-performance yet interpretable network, which diffuses the depth in a hierarchical manner to ensure global smoothness while preserving visually salient details. Experimental results demonstrate that the proposed scheme improves consistency with depth measurements and robustness to input corruption for depth completion, outperforming competing schemes on the NYUv2, KITTI-DC and TetrasRGBD datasets.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"21 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02188-3","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Depth completion aims to estimate dense depth images from sparse depth measurements with RGB image guidance. However, previous approaches have not fully considered sparse input fidelity, resulting in inconsistency with sparse input and poor robustness to input corruption. In this paper, we propose the deep unrolled Weighted Graph Laplacian Regularization (WGLR) for depth completion which enhances input fidelity and noise robustness by enforcing input constraints in the network design. Specifically, we assume graph Laplacian regularization as the prior for depth completion optimization and derive the WGLR solution by interpreting the depth map as the discrete counterpart of continuous manifold, enabling analysis in continuous domain and enforcing input consistency. Based on its anisotropic diffusion interpretation, we unroll the WGLR solution into iterative filtering for efficient implementation. Furthermore, we integrate the unrolled WGLR into deep learning framework to develop high-performance yet interpretable network, which diffuses the depth in a hierarchical manner to ensure global smoothness while preserving visually salient details. Experimental results demonstrate that the proposed scheme improves consistency with depth measurements and robustness to input corruption for depth completion, outperforming competing schemes on the NYUv2, KITTI-DC and TetrasRGBD datasets.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.