Visualizing intermediate stages of viral membrane fusion by cryo-electron tomography

IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Trends in Biochemical Sciences Pub Date : 2024-10-01 DOI:10.1016/j.tibs.2024.06.012
Sally M. Kephart , Nancy Hom , Kelly K. Lee
{"title":"Visualizing intermediate stages of viral membrane fusion by cryo-electron tomography","authors":"Sally M. Kephart ,&nbsp;Nancy Hom ,&nbsp;Kelly K. Lee","doi":"10.1016/j.tibs.2024.06.012","DOIUrl":null,"url":null,"abstract":"<div><div>Protein-mediated membrane fusion is the dynamic process where specialized protein machinery undergoes dramatic conformational changes that drive two membrane bilayers together, leading to lipid mixing and opening of a fusion pore between previously separate membrane-bound compartments. Membrane fusion is an essential stage of enveloped virus entry that results in viral genome delivery into host cells. Recent studies applying cryo-electron microscopy techniques in a time-resolved fashion provide unprecedented glimpses into the interaction of viral fusion proteins and membranes, revealing fusion intermediate states from the initiation of fusion to release of the viral genome. In combination with complementary structural, biophysical, and computation modeling approaches, these advances are shedding new light on the mechanics and dynamics of protein-mediated membrane fusion.</div></div>","PeriodicalId":440,"journal":{"name":"Trends in Biochemical Sciences","volume":"49 10","pages":"Pages 916-931"},"PeriodicalIF":11.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11455608/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Biochemical Sciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968000424001609","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Protein-mediated membrane fusion is the dynamic process where specialized protein machinery undergoes dramatic conformational changes that drive two membrane bilayers together, leading to lipid mixing and opening of a fusion pore between previously separate membrane-bound compartments. Membrane fusion is an essential stage of enveloped virus entry that results in viral genome delivery into host cells. Recent studies applying cryo-electron microscopy techniques in a time-resolved fashion provide unprecedented glimpses into the interaction of viral fusion proteins and membranes, revealing fusion intermediate states from the initiation of fusion to release of the viral genome. In combination with complementary structural, biophysical, and computation modeling approaches, these advances are shedding new light on the mechanics and dynamics of protein-mediated membrane fusion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过低温电子断层扫描观察病毒膜融合的中间阶段。
蛋白质介导的膜融合是一个动态过程,在这一过程中,专门的蛋白质机制会发生巨大的构象变化,从而推动两层膜结合在一起,导致脂质混合,并在先前分离的膜结合区之间打开一个融合孔。膜融合是包膜病毒进入宿主细胞的重要阶段,它能将病毒基因组送入宿主细胞。最近的研究以时间分辨的方式应用冷冻电镜技术,提供了病毒融合蛋白与膜相互作用的前所未有的一瞥,揭示了从开始融合到释放病毒基因组的融合中间状态。结合互补的结构、生物物理和计算建模方法,这些进展为蛋白质介导的膜融合的力学和动力学提供了新的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Trends in Biochemical Sciences
Trends in Biochemical Sciences 生物-生化与分子生物学
CiteScore
22.90
自引率
0.70%
发文量
148
审稿时长
6-12 weeks
期刊介绍: For over 40 years, Trends in Biochemical Sciences (TIBS) has been a leading publication keeping readers informed about recent advances in all areas of biochemistry and molecular biology. Through monthly, peer-reviewed issues, TIBS covers a wide range of topics, from traditional subjects like protein structure and function to emerging areas in signaling and metabolism. Articles are curated by the Editor and authored by top researchers in their fields, with a focus on moving beyond simple literature summaries to providing novel insights and perspectives. Each issue primarily features concise and timely Reviews and Opinions, supplemented by shorter articles including Spotlights, Forums, and Technology of the Month, as well as impactful pieces like Science & Society and Scientific Life articles.
期刊最新文献
ERK-dependent protein phosphorylation in KRAS-mutant cancer: a mix of the expected and surprising. TEX264-mediated selective autophagy directs DNA damage repair. Eph receptor signaling complexes in the plasma membrane. Endomembrane GPCR signaling: 15 years on, the quest continues. NMR spectroscopy reveals insights into mechanisms of GPCR signaling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1