{"title":"A Comparison of Natural and Therapeutic Anti-IgE Antibodies.","authors":"Monique Vogel, Paul Engeroff","doi":"10.3390/antib13030058","DOIUrl":null,"url":null,"abstract":"<p><p>Immunoglobulin E (IgE) plays a critical role for the immune system, fighting against parasites, toxins, and cancer. However, when it reacts to allergens without proper regulation, it can cause allergic reactions, including anaphylaxis, through a process initiated by effector cells such as basophils and mast cells. These cells display IgE on their surface, bound to the high-affinity IgE receptor FcεRI. A cross-linking antigen then triggers degranulation and the release of inflammatory mediators from the cells. Therapeutic monoclonal anti-IgE antibodies such as omalizumab, disrupt this process and are used to manage IgE-related conditions such as severe allergic asthma and chronic spontaneous urticaria. Interestingly, naturally occurring anti-IgE autoantibodies circulate at surprisingly high levels in healthy humans and mice and may thus be instrumental in regulating IgE activity. Although many open questions remain, recent studies have shed new light on their role as IgE regulators and their mechanism of action. Here, we summarize the latest insights on natural anti-IgE autoantibodies, and we compare their functional features to therapeutic monoclonal anti-IgE autoantibodies.</p>","PeriodicalId":8188,"journal":{"name":"Antibodies","volume":"13 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11270207/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibodies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/antib13030058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Immunoglobulin E (IgE) plays a critical role for the immune system, fighting against parasites, toxins, and cancer. However, when it reacts to allergens without proper regulation, it can cause allergic reactions, including anaphylaxis, through a process initiated by effector cells such as basophils and mast cells. These cells display IgE on their surface, bound to the high-affinity IgE receptor FcεRI. A cross-linking antigen then triggers degranulation and the release of inflammatory mediators from the cells. Therapeutic monoclonal anti-IgE antibodies such as omalizumab, disrupt this process and are used to manage IgE-related conditions such as severe allergic asthma and chronic spontaneous urticaria. Interestingly, naturally occurring anti-IgE autoantibodies circulate at surprisingly high levels in healthy humans and mice and may thus be instrumental in regulating IgE activity. Although many open questions remain, recent studies have shed new light on their role as IgE regulators and their mechanism of action. Here, we summarize the latest insights on natural anti-IgE autoantibodies, and we compare their functional features to therapeutic monoclonal anti-IgE autoantibodies.
期刊介绍:
Antibodies (ISSN 2073-4468), an international, peer-reviewed open access journal which provides an advanced forum for studies related to antibodies and antigens. It publishes reviews, research articles, communications and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. Electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material. This journal covers all topics related to antibodies and antigens, topics of interest include (but are not limited to): antibody-producing cells (including B cells), antibody structure and function, antibody-antigen interactions, Fc receptors, antibody manufacturing antibody engineering, antibody therapy, immunoassays, antibody diagnosis, tissue antigens, exogenous antigens, endogenous antigens, autoantigens, monoclonal antibodies, natural antibodies, humoral immune responses, immunoregulatory molecules.