Detection and margin assessment of thyroid carcinoma with microscopic hyperspectral imaging using transformer networks.

IF 3 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of Biomedical Optics Pub Date : 2024-09-01 Epub Date: 2024-07-24 DOI:10.1117/1.JBO.29.9.093505
Minh Ha Tran, Ling Ma, Hasan Mubarak, Ofelia Gomez, James Yu, Michelle Bryarly, Baowei Fei
{"title":"Detection and margin assessment of thyroid carcinoma with microscopic hyperspectral imaging using transformer networks.","authors":"Minh Ha Tran, Ling Ma, Hasan Mubarak, Ofelia Gomez, James Yu, Michelle Bryarly, Baowei Fei","doi":"10.1117/1.JBO.29.9.093505","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Hyperspectral imaging (HSI) is an emerging imaging modality for oncological applications and can improve cancer detection with digital pathology.</p><p><strong>Aim: </strong>The study aims to highlight the increased accuracy and sensitivity of detecting the margin of thyroid carcinoma in hematoxylin and eosin (H&E)-stained histological slides using HSI and data augmentation methods.</p><p><strong>Approach: </strong>Using an automated microscopic imaging system, we captured 2599 hyperspectral images from 65 H&E-stained human thyroid slides. Images were then preprocessed into 153,906 image patches of dimension <math><mrow><mn>250</mn> <mo>×</mo> <mn>250</mn> <mo>×</mo> <mn>84</mn> <mtext>  pixels</mtext></mrow> </math> . We modified the TimeSformer network architecture, which used alternating spectral attention and spatial attention layers. We implemented several data augmentation methods for HSI based on the RandAugment algorithm. We compared the performances of TimeSformer on HSI against the performances of pretrained ConvNext and pretrained vision transformers (ViT) networks on red, green, and blue (RGB) images. Finally, we applied attention unrolling techniques on the trained TimeSformer network to identify the biological features to which the network paid attention.</p><p><strong>Results: </strong>In the testing dataset, TimeSformer achieved an accuracy of 90.87%, a weighted <math> <mrow><msub><mi>F</mi> <mn>1</mn></msub> </mrow> </math> score of 89.79%, a sensitivity of 91.50%, and an area under the receiving operator characteristic curve (AU-ROC) score of 97.04%. Additionally, TimeSformer produced thyroid carcinoma tumor margins with an average Jaccard score of 0.76 mm. Without data augmentation, TimeSformer achieved an accuracy of 88.23%, a weighted <math> <mrow><msub><mi>F</mi> <mn>1</mn></msub> </mrow> </math> score of 86.46%, a sensitivity of 85.53%, and an AU-ROC score of 94.94%. In comparison, the ViT network achieved an 89.98% accuracy, an 88.14% weighted <math> <mrow><msub><mi>F</mi> <mn>1</mn></msub> </mrow> </math> score, an 84.77% sensitivity, and a 96.17% AU-ROC. Our visualization results showed that the network paid attention to biological features.</p><p><strong>Conclusions: </strong>The TimeSformer model trained with hyperspectral histological data consistently outperformed conventional RGB-based models, highlighting the superiority of HSI in this context. Our proposed augmentation methods improved the accuracy, the <math> <mrow><msub><mi>F</mi> <mn>1</mn></msub> </mrow> </math> score, and the sensitivity score.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"29 9","pages":"093505"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11268383/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.29.9.093505","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Significance: Hyperspectral imaging (HSI) is an emerging imaging modality for oncological applications and can improve cancer detection with digital pathology.

Aim: The study aims to highlight the increased accuracy and sensitivity of detecting the margin of thyroid carcinoma in hematoxylin and eosin (H&E)-stained histological slides using HSI and data augmentation methods.

Approach: Using an automated microscopic imaging system, we captured 2599 hyperspectral images from 65 H&E-stained human thyroid slides. Images were then preprocessed into 153,906 image patches of dimension 250 × 250 × 84   pixels . We modified the TimeSformer network architecture, which used alternating spectral attention and spatial attention layers. We implemented several data augmentation methods for HSI based on the RandAugment algorithm. We compared the performances of TimeSformer on HSI against the performances of pretrained ConvNext and pretrained vision transformers (ViT) networks on red, green, and blue (RGB) images. Finally, we applied attention unrolling techniques on the trained TimeSformer network to identify the biological features to which the network paid attention.

Results: In the testing dataset, TimeSformer achieved an accuracy of 90.87%, a weighted F 1 score of 89.79%, a sensitivity of 91.50%, and an area under the receiving operator characteristic curve (AU-ROC) score of 97.04%. Additionally, TimeSformer produced thyroid carcinoma tumor margins with an average Jaccard score of 0.76 mm. Without data augmentation, TimeSformer achieved an accuracy of 88.23%, a weighted F 1 score of 86.46%, a sensitivity of 85.53%, and an AU-ROC score of 94.94%. In comparison, the ViT network achieved an 89.98% accuracy, an 88.14% weighted F 1 score, an 84.77% sensitivity, and a 96.17% AU-ROC. Our visualization results showed that the network paid attention to biological features.

Conclusions: The TimeSformer model trained with hyperspectral histological data consistently outperformed conventional RGB-based models, highlighting the superiority of HSI in this context. Our proposed augmentation methods improved the accuracy, the F 1 score, and the sensitivity score.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用变压器网络的显微高光谱成像技术检测和评估甲状腺癌的边缘。
意义:高光谱成像(HSI)是一种新兴的肿瘤应用成像模式,可通过数字病理学改进癌症检测。目的:本研究旨在强调使用 HSI 和数据增强方法检测苏木精和伊红(H&E)染色组织学切片中甲状腺癌边缘的准确性和灵敏度:利用自动显微成像系统,我们从65张H&E染色的人体甲状腺切片中捕获了2599幅高光谱图像。然后将图像预处理成 153 906 个尺寸为 250 × 250 × 84 像素的图像片段。我们修改了 TimeSformer 网络架构,该架构交替使用光谱注意层和空间注意层。我们在 RandAugment 算法的基础上为人脸识别实现了多种数据增强方法。我们将 TimeSformer 在 HSI 上的表现与预训练 ConvNext 和预训练视觉转换器(ViT)网络在红、绿、蓝(RGB)图像上的表现进行了比较。最后,我们在训练好的 TimeSformer 网络上应用了注意力展开技术,以确定该网络所关注的生物特征:在测试数据集中,TimeSformer 的准确率为 90.87%,加权 F 1 得分为 89.79%,灵敏度为 91.50%,接收运算特征曲线下面积 (AU-ROC) 得分为 97.04%。此外,TimeSformer 生成的甲状腺癌肿瘤边缘的平均 Jaccard 分数为 0.76 毫米。在没有数据增强的情况下,TimeSformer 的准确率为 88.23%,加权 F 1 得分为 86.46%,灵敏度为 85.53%,AU-ROC 得分为 94.94%。相比之下,ViT 网络的准确率为 89.98%,加权 F 1 得分为 88.14%,灵敏度为 84.77%,AU-ROC 为 96.17%。我们的可视化结果表明,该网络注重生物特征:使用高光谱组织学数据训练的 TimeSformer 模型一直优于传统的基于 RGB 的模型,这凸显了高光谱组织学数据在这方面的优越性。我们提出的增强方法提高了准确度、F 1 分数和灵敏度分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
263
审稿时长
2 months
期刊介绍: The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.
期刊最新文献
Hyperspectral imaging in neurosurgery: a review of systems, computational methods, and clinical applications. Digital instrument simulator to optimize the development of hyperspectral systems: application for intraoperative functional brain mapping. Personal identification using a cross-sectional hyperspectral image of a hand. Exploring near-infrared autofluorescence properties in parathyroid tissue: an analysis of fresh and paraffin-embedded thyroidectomy specimens. Impact of signal-to-noise ratio and contrast definition on the sensitivity assessment and benchmarking of fluorescence molecular imaging systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1