Li-Li Zhang , Jia-Ying Xu , Wei Wei , Zhi-Qiang Hu , Yan Zhou , Jia-Yang Zheng , Yu Sha , Lin Zhao , Jing Yang , Qi Sun , Li-Qiang Qin
{"title":"Dietary restriction and fasting alleviate radiation-induced intestinal injury by inhibiting cGAS/STING activation","authors":"Li-Li Zhang , Jia-Ying Xu , Wei Wei , Zhi-Qiang Hu , Yan Zhou , Jia-Yang Zheng , Yu Sha , Lin Zhao , Jing Yang , Qi Sun , Li-Qiang Qin","doi":"10.1016/j.jnutbio.2024.109707","DOIUrl":null,"url":null,"abstract":"<div><p>Radiation injury to the intestine is one of the most common complications in patients undergoing abdominal or pelvic cavity radiotherapy, limiting the clinical application of this treatment. Evidence shows the potential benefits of dietary restriction in improving metabolic profiles and age-related diseases. The present study investigated the effects and mechanisms of dietary restriction in radiation-induced intestinal injury. The mice were randomly divided into the control group, 10 Gy total abdominal irradiation (TAI) group, and groups pretreated with 30% caloric restriction (CR) for 7 days or 24 h fasting before TAI. After radiation, the mice were returned to ad libitum. The mice were sacrificed 3.5 days after radiation, and tissue samples were collected. CR and fasting reduced radiation-induced intestinal damage and promoted intestinal recovery by restoring the shortened colon length, improving the impaired intestinal structure and permeability, and remodeling gut microbial structure. CR and fasting also significantly reduced mitochondrial damage and DNA damage, which in turn reduced activation of the cyclic GMP-AMP synthase/stimulator of interferon gene (cGAS/STING) pathway and the production of type I interferon and other chemokines in the jejunum. Since the cGAS/STING pathway is linked with innate immunity, we further showed that CR and fasting induced polarization to immunosuppressive M2 macrophage, decreased CD8<sup>+</sup> cytotoxic T lymphocytes, and downregulated proinflammatory factors in the jejunum. Our findings indicated that CR and fasting alleviate radiation-induced intestinal damage by reducing cGAS/STING-mediated harmful immune responses.</p></div>","PeriodicalId":16618,"journal":{"name":"Journal of Nutritional Biochemistry","volume":"133 ","pages":"Article 109707"},"PeriodicalIF":4.8000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutritional Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955286324001402","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Radiation injury to the intestine is one of the most common complications in patients undergoing abdominal or pelvic cavity radiotherapy, limiting the clinical application of this treatment. Evidence shows the potential benefits of dietary restriction in improving metabolic profiles and age-related diseases. The present study investigated the effects and mechanisms of dietary restriction in radiation-induced intestinal injury. The mice were randomly divided into the control group, 10 Gy total abdominal irradiation (TAI) group, and groups pretreated with 30% caloric restriction (CR) for 7 days or 24 h fasting before TAI. After radiation, the mice were returned to ad libitum. The mice were sacrificed 3.5 days after radiation, and tissue samples were collected. CR and fasting reduced radiation-induced intestinal damage and promoted intestinal recovery by restoring the shortened colon length, improving the impaired intestinal structure and permeability, and remodeling gut microbial structure. CR and fasting also significantly reduced mitochondrial damage and DNA damage, which in turn reduced activation of the cyclic GMP-AMP synthase/stimulator of interferon gene (cGAS/STING) pathway and the production of type I interferon and other chemokines in the jejunum. Since the cGAS/STING pathway is linked with innate immunity, we further showed that CR and fasting induced polarization to immunosuppressive M2 macrophage, decreased CD8+ cytotoxic T lymphocytes, and downregulated proinflammatory factors in the jejunum. Our findings indicated that CR and fasting alleviate radiation-induced intestinal damage by reducing cGAS/STING-mediated harmful immune responses.
期刊介绍:
Devoted to advancements in nutritional sciences, The Journal of Nutritional Biochemistry presents experimental nutrition research as it relates to: biochemistry, molecular biology, toxicology, or physiology.
Rigorous reviews by an international editorial board of distinguished scientists ensure publication of the most current and key research being conducted in nutrition at the cellular, animal and human level. In addition to its monthly features of critical reviews and research articles, The Journal of Nutritional Biochemistry also periodically publishes emerging issues, experimental methods, and other types of articles.