{"title":"Precision Nutrition for Management of Cardiovascular Disease Risk during Menopause.","authors":"Hannah E Cabre, Emily K Woolf, Leanne M Redman","doi":"10.1159/000540337","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Women can spend up to 40% of their lives in the postmenopausal state. As women begin to transition into menopause, known as perimenopause, changes in hormonal concentrations and body composition dramatically increase overall cardiometabolic risk. Dietary patterns and interventions can be utilized to prevent and treat cardiovascular disease (CVD) and some dietary patterns over others may be more beneficial due to their specific effects on the health aspects of menopause. In this narrative review, we summarize key cardiovascular alterations that occur during the menopause transition and explore current dietary recommendations to address CVD risk as well as explore the new frontier of precision nutrition and the implications for nutrition prescription during menopause.</p><p><strong>Summary: </strong>Popular dietary interventions for CVD such as the Dietary Approaches to Stop Hypertension (DASH) diet and the Mediterranean diet (MED) have limited data in women following menopause. However, both diets improve CVD risk biomarkers of total cholesterol and low-density lipoprotein cholesterol as well as lower oxidative stress and inflammation and improve endothelial function. As the menopause transition increases the risk for developing metabolic syndrome, insulin insensitivity, and dyslipidemia, the DASH diet and MED may be impactful dietary strategies for mediating CVD risk in menopausal women. However, these are \"one-size-fits-all\" approaches that neglect individual characteristics such as genetic predisposition and environmental factors. Precision nutrition considers individual factors for nutrition prescription, spanning from evaluating food intake preferences and behaviors to deep phenotyping. Data from a large-scale investigation of the menopause transition suggests nutritional strategies that address postprandial glycemic responses, and the gut microbiome may attenuate some of the unfavorable effects of menopause on CVD risk factors.</p><p><strong>Key messages: </strong>Considering menopause, women are a clinical population that would greatly benefit from precision nutrition. Future research should explore the use of machine learning and artificial intelligence in a precision nutrition framework to modify the DASH diet and MED to address adverse effects that occur during the menopause transition are vital for supporting women's health as they age.</p>","PeriodicalId":18030,"journal":{"name":"Lifestyle Genomics","volume":" ","pages":"93-101"},"PeriodicalIF":2.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11394930/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifestyle Genomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000540337","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Women can spend up to 40% of their lives in the postmenopausal state. As women begin to transition into menopause, known as perimenopause, changes in hormonal concentrations and body composition dramatically increase overall cardiometabolic risk. Dietary patterns and interventions can be utilized to prevent and treat cardiovascular disease (CVD) and some dietary patterns over others may be more beneficial due to their specific effects on the health aspects of menopause. In this narrative review, we summarize key cardiovascular alterations that occur during the menopause transition and explore current dietary recommendations to address CVD risk as well as explore the new frontier of precision nutrition and the implications for nutrition prescription during menopause.
Summary: Popular dietary interventions for CVD such as the Dietary Approaches to Stop Hypertension (DASH) diet and the Mediterranean diet (MED) have limited data in women following menopause. However, both diets improve CVD risk biomarkers of total cholesterol and low-density lipoprotein cholesterol as well as lower oxidative stress and inflammation and improve endothelial function. As the menopause transition increases the risk for developing metabolic syndrome, insulin insensitivity, and dyslipidemia, the DASH diet and MED may be impactful dietary strategies for mediating CVD risk in menopausal women. However, these are "one-size-fits-all" approaches that neglect individual characteristics such as genetic predisposition and environmental factors. Precision nutrition considers individual factors for nutrition prescription, spanning from evaluating food intake preferences and behaviors to deep phenotyping. Data from a large-scale investigation of the menopause transition suggests nutritional strategies that address postprandial glycemic responses, and the gut microbiome may attenuate some of the unfavorable effects of menopause on CVD risk factors.
Key messages: Considering menopause, women are a clinical population that would greatly benefit from precision nutrition. Future research should explore the use of machine learning and artificial intelligence in a precision nutrition framework to modify the DASH diet and MED to address adverse effects that occur during the menopause transition are vital for supporting women's health as they age.
期刊介绍:
Lifestyle Genomics aims to provide a forum for highlighting new advances in the broad area of lifestyle-gene interactions and their influence on health and disease. The journal welcomes novel contributions that investigate how genetics may influence a person’s response to lifestyle factors, such as diet and nutrition, natural health products, physical activity, and sleep, amongst others. Additionally, contributions examining how lifestyle factors influence the expression/abundance of genes, proteins and metabolites in cell and animal models as well as in humans are also of interest. The journal will publish high-quality original research papers, brief research communications, reviews outlining timely advances in the field, and brief research methods pertaining to lifestyle genomics. It will also include a unique section under the heading “Market Place” presenting articles of companies active in the area of lifestyle genomics. Research articles will undergo rigorous scientific as well as statistical/bioinformatic review to ensure excellence.