Global huntingtin knockout in adult mice leads to fatal neurodegeneration that spares the pancreas.

IF 3.3 2区 生物学 Q1 BIOLOGY Life Science Alliance Pub Date : 2024-07-25 Print Date: 2024-09-01 DOI:10.26508/lsa.202402571
Robert M Bragg, Ella W Mathews, Andrea Grindeland, Jeffrey P Cantle, David Howland, Tom Vogt, Jeffrey B Carroll
{"title":"Global huntingtin knockout in adult mice leads to fatal neurodegeneration that spares the pancreas.","authors":"Robert M Bragg, Ella W Mathews, Andrea Grindeland, Jeffrey P Cantle, David Howland, Tom Vogt, Jeffrey B Carroll","doi":"10.26508/lsa.202402571","DOIUrl":null,"url":null,"abstract":"<p><p>Huntington's disease (HD) is a fatal neurodegenerative disorder caused by an expanded CAG tract in the huntingtin (HTT) gene, leading to toxic gains of function. HTT-lowering treatments are in clinical trials, but the risks imposed are unclear. Recent studies have reported on the consequences of widespread HTT loss in mice, where one group described early HTT loss leading to fatal pancreatitis, but later loss as benign. Another group reported no pancreatitis but found widespread neurological phenotypes including subcortical calcification. To better understand the liabilities of widespread HTT loss, we knocked out <i>Htt</i> with two separate tamoxifen-inducible Cre lines. We find that loss of HTT at 2 mo of age leads to progressive tremors and severe subcortical calcification at examination at 14 mo of age but does not result in acute pancreatitis or histological changes in the pancreas. We, in addition, report that HTT loss is followed by sustained induction of circulating neurofilament light chain. These results confirm that global loss of HTT in mice is associated with pronounced risks, including progressive subcortical calcification and neurodegeneration.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"7 9","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11272958/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life Science Alliance","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.26508/lsa.202402571","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Huntington's disease (HD) is a fatal neurodegenerative disorder caused by an expanded CAG tract in the huntingtin (HTT) gene, leading to toxic gains of function. HTT-lowering treatments are in clinical trials, but the risks imposed are unclear. Recent studies have reported on the consequences of widespread HTT loss in mice, where one group described early HTT loss leading to fatal pancreatitis, but later loss as benign. Another group reported no pancreatitis but found widespread neurological phenotypes including subcortical calcification. To better understand the liabilities of widespread HTT loss, we knocked out Htt with two separate tamoxifen-inducible Cre lines. We find that loss of HTT at 2 mo of age leads to progressive tremors and severe subcortical calcification at examination at 14 mo of age but does not result in acute pancreatitis or histological changes in the pancreas. We, in addition, report that HTT loss is followed by sustained induction of circulating neurofilament light chain. These results confirm that global loss of HTT in mice is associated with pronounced risks, including progressive subcortical calcification and neurodegeneration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在成年小鼠体内全面敲除亨廷汀基因会导致致命的神经变性,但胰腺不会受到影响。
亨廷顿氏病(Huntington's disease,HD)是一种致命的神经退行性疾病,其病因是亨廷丁(HTT)基因中的 CAG 道扩大,导致功能毒性增强。降低 HTT 的治疗方法正在临床试验中,但所带来的风险尚不明确。最近的研究报告了小鼠体内 HTT 广泛缺失的后果,其中一组描述了 HTT 早期缺失导致的致命性胰腺炎,但后期缺失则是良性的。另一个研究小组报告说没有胰腺炎,但发现了广泛的神经表型,包括皮层下钙化。为了更好地了解广泛的 HTT 缺失的责任,我们分别用两个他莫昔芬诱导的 Cre 株系敲除了 Htt。我们发现,在 2 个月大时,HTT 的缺失会导致进行性震颤,并在 14 个月大时进行检查时发现严重的皮层下钙化,但不会导致急性胰腺炎或胰腺组织学变化。此外,我们还报告了 HTT 缺失后循环神经丝轻链的持续诱导。这些结果证实,小鼠HTT的全面缺失与明显的风险有关,包括进行性皮层下钙化和神经变性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Life Science Alliance
Life Science Alliance Agricultural and Biological Sciences-Plant Science
CiteScore
5.80
自引率
2.30%
发文量
241
审稿时长
10 weeks
期刊介绍: Life Science Alliance is a global, open-access, editorially independent, and peer-reviewed journal launched by an alliance of EMBO Press, Rockefeller University Press, and Cold Spring Harbor Laboratory Press. Life Science Alliance is committed to rapid, fair, and transparent publication of valuable research from across all areas in the life sciences.
期刊最新文献
Cryo-EM structures reveal the H+/citrate symport mechanism of Drosophila INDY. Human genetic variants in SLC39A8 impact uptake and steady-state metal levels within the cell. A role for mitochondria-ER crosstalk in amyotrophic lateral sclerosis 8 pathogenesis. Gastric cancer genomics study using reference human pangenomes. High-resolution analysis of human centromeric chromatin.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1