Construction of an orthogonal transport system for Saccharomyces cerevisiae peroxisome to efficiently produce sesquiterpenes

IF 6.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Metabolic engineering Pub Date : 2024-07-22 DOI:10.1016/j.ymben.2024.07.010
Chuanbo Zhang , Chen Chen , Xueke Bian , Jiale Zhang , Zhanwei Zhang , Yuanyuan Ma , Wenyu Lu
{"title":"Construction of an orthogonal transport system for Saccharomyces cerevisiae peroxisome to efficiently produce sesquiterpenes","authors":"Chuanbo Zhang ,&nbsp;Chen Chen ,&nbsp;Xueke Bian ,&nbsp;Jiale Zhang ,&nbsp;Zhanwei Zhang ,&nbsp;Yuanyuan Ma ,&nbsp;Wenyu Lu","doi":"10.1016/j.ymben.2024.07.010","DOIUrl":null,"url":null,"abstract":"<div><p>Subcellular compartmentalization is a crucial evolution characteristic of eukaryotic cells, providing inherent advantages for the construction of artificial biological systems to efficiently produce natural products. The establishment of an artificial protein transport system represents a pivotal initial step towards developing efficient artificial biological systems. Peroxisome has been demonstrated as a suitable subcellular compartment for the biosynthesis of terpenes in yeast. In this study, an artificial protein transporter ScPEX5* was firstly constructed by fusing the N-terminal sequence of PEX5 from <em>S. cerevisiae</em> and the C-terminal sequence of PEX5. Subsequently, an artificial protein transport system including the artificial signaling peptide YQSYY and its enhancing upstream 9 amino acid (9AA) residues along with ScPEX5* was demonstrated to exhibit orthogonality to the internal transport system of peroxisomes in <em>S. cerevisiae</em>. Furthermore, a library of 9AA residues was constructed and selected using high throughput pigment screening system to obtain an optimized signaling peptide (oPTS1*). Finally, the ScPEX5*-oPTS1* system was employed to construct yeast cell factories capable of producing the sesquiterpene α-humulene, resulting in an impressive α-humulene titer of 17.33 g/L and a productivity of 0.22 g/L/h achieved through fed-batch fermentation in a 5 L bioreactor. This research presents a valuable tool for the construction of artificial peroxisome cell factories and effective strategies for synthesizing other natural products in yeast.</p></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":"85 ","pages":"Pages 84-93"},"PeriodicalIF":6.8000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096717624001009","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Subcellular compartmentalization is a crucial evolution characteristic of eukaryotic cells, providing inherent advantages for the construction of artificial biological systems to efficiently produce natural products. The establishment of an artificial protein transport system represents a pivotal initial step towards developing efficient artificial biological systems. Peroxisome has been demonstrated as a suitable subcellular compartment for the biosynthesis of terpenes in yeast. In this study, an artificial protein transporter ScPEX5* was firstly constructed by fusing the N-terminal sequence of PEX5 from S. cerevisiae and the C-terminal sequence of PEX5. Subsequently, an artificial protein transport system including the artificial signaling peptide YQSYY and its enhancing upstream 9 amino acid (9AA) residues along with ScPEX5* was demonstrated to exhibit orthogonality to the internal transport system of peroxisomes in S. cerevisiae. Furthermore, a library of 9AA residues was constructed and selected using high throughput pigment screening system to obtain an optimized signaling peptide (oPTS1*). Finally, the ScPEX5*-oPTS1* system was employed to construct yeast cell factories capable of producing the sesquiterpene α-humulene, resulting in an impressive α-humulene titer of 17.33 g/L and a productivity of 0.22 g/L/h achieved through fed-batch fermentation in a 5 L bioreactor. This research presents a valuable tool for the construction of artificial peroxisome cell factories and effective strategies for synthesizing other natural products in yeast.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为酿酒酵母过氧物酶体构建正交运输系统,以高效生产倍半萜。
亚细胞区隔是真核细胞的一个重要进化特征,为构建人工生物系统以高效生产天然产品提供了先天优势。建立人工蛋白质转运系统是开发高效人工生物系统的关键性第一步。过氧化物酶体已被证明是酵母生物合成萜烯的合适亚细胞区室。在本研究中,首先通过融合 S. cerevisiae 的 PEX5 N 端序列和 PEX5 的 C 端序列,构建了人工蛋白转运体 ScPEX5*。随后,包括人工信号肽 YQSYY 及其增强的上游 9 个氨基酸(9AA)残基和 ScPEX5* 的人工蛋白质转运系统被证明与 S. cerevisiae 的过氧物酶体内部转运系统具有正交性。此外,利用高通量色素筛选系统构建并筛选了 9AA 残基库,从而获得了优化的信号肽(oPTS1*)。最后,利用 ScPEX5*-oPTS1* 系统构建了能够生产倍半萜α-胡麻烯的酵母细胞工厂,通过在 5 升生物反应器中进行喂料批量发酵,α-胡麻烯的滴度达到了惊人的 17.33 克/升,生产率为 0.22 克/升/小时。这项研究为构建人工过氧化物酶体细胞工厂和在酵母中合成其他天然产品的有效策略提供了宝贵的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Metabolic engineering
Metabolic engineering 工程技术-生物工程与应用微生物
CiteScore
15.60
自引率
6.00%
发文量
140
审稿时长
44 days
期刊介绍: Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.
期刊最新文献
Unraveling productivity-enhancing genes in Chinese hamster ovary cells via CRISPR activation screening using recombinase-mediated cassette exchange system. The faucet knob effect of DptE crotonylation on the initial flow of daptomycin biosynthesis. Versatile Xylose and Arabinose Genetic Switches development for Yeasts. Not all cytochrome b5s are created equal: How a specific CytB5 boosts forskolin biosynthesis in Saccharomyces cerevisiae Applying metabolic control strategies to engineered T cell cancer therapies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1