[Regulatory effect of Diwu Yanggan Decoction on lysoglycerophospholipids in circulating exosomes in a mouse model of nonalcoholic fatty liver disease].
G Chen, X Xiang, Z Zeng, R Huang, S Jin, M Xiao, C Song
{"title":"[Regulatory effect of <i>Diwu Yanggan</i> Decoction on lysoglycerophospholipids in circulating exosomes in a mouse model of nonalcoholic fatty liver disease].","authors":"G Chen, X Xiang, Z Zeng, R Huang, S Jin, M Xiao, C Song","doi":"10.12122/j.issn.1673-4254.2024.07.18","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To evaluate the regulatory effect of <i>Diwu Yanggan</i> (DWYG) Decoction on lysoglycerophospholipids (Lyso-GPLs) in circulating exosomes in a mouse model of nonalcoholic fatty liver disease (NAFLD).</p><p><strong>Methods: </strong>Circulating exosomes isolated from mouse serum by size exclusion chromatography were morphologically characterized using transmission electron microscope and examined for surface markers CD9, CD63 and TSG101 using Western blotting. Twenty-four male Kunming mice were randomized into 3 groups for normal feeding (control, <i>n</i>=8) or high-fat diet feeding for 1 week to induce NAFLD, after which the latter mice were given DWYG decoction (treatment group, <i>n</i>=8) or normal saline (model group, <i>n</i>=8) by gavage for 4 weeks. After the last treatment, blood samples were collected from the mice for testing serum TC, HDL-C, LDL-C, ALT and AST levels and isolating circulating exosomes. Using multivariate statistical analysis based on targeted metabolomics strategy, the potential biomarkers for Lyso-GPLs in the exosomes were screened.</p><p><strong>Results: </strong>The isolated exosomes about 100 nm in size had a typical saucer-like structure with distinct double-layer membranes and a mean particle size of 137.5 nm and expressed the specific surface marker proteins CD9, CD63 and TSG101. The mouse models of NAFLD had significantly increased serum levels of TC, HDL-C, LDL-C and AST and lowered serum ALT level. A total of 43 Lyso-GPLs with significant reduction after DWYG Decoction treatment were identified in NAFLD mice.</p><p><strong>Conclusion: </strong>DWYG Decoction can regulate Lyso-GPLs in circulating exosomes in NAFLD mice, which provides a new clue for studying the therapeutic mechanism of DWYG Decoction for liver disease.</p>","PeriodicalId":18962,"journal":{"name":"Nan fang yi ke da xue xue bao = Journal of Southern Medical University","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11270654/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nan fang yi ke da xue xue bao = Journal of Southern Medical University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12122/j.issn.1673-4254.2024.07.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To evaluate the regulatory effect of Diwu Yanggan (DWYG) Decoction on lysoglycerophospholipids (Lyso-GPLs) in circulating exosomes in a mouse model of nonalcoholic fatty liver disease (NAFLD).
Methods: Circulating exosomes isolated from mouse serum by size exclusion chromatography were morphologically characterized using transmission electron microscope and examined for surface markers CD9, CD63 and TSG101 using Western blotting. Twenty-four male Kunming mice were randomized into 3 groups for normal feeding (control, n=8) or high-fat diet feeding for 1 week to induce NAFLD, after which the latter mice were given DWYG decoction (treatment group, n=8) or normal saline (model group, n=8) by gavage for 4 weeks. After the last treatment, blood samples were collected from the mice for testing serum TC, HDL-C, LDL-C, ALT and AST levels and isolating circulating exosomes. Using multivariate statistical analysis based on targeted metabolomics strategy, the potential biomarkers for Lyso-GPLs in the exosomes were screened.
Results: The isolated exosomes about 100 nm in size had a typical saucer-like structure with distinct double-layer membranes and a mean particle size of 137.5 nm and expressed the specific surface marker proteins CD9, CD63 and TSG101. The mouse models of NAFLD had significantly increased serum levels of TC, HDL-C, LDL-C and AST and lowered serum ALT level. A total of 43 Lyso-GPLs with significant reduction after DWYG Decoction treatment were identified in NAFLD mice.
Conclusion: DWYG Decoction can regulate Lyso-GPLs in circulating exosomes in NAFLD mice, which provides a new clue for studying the therapeutic mechanism of DWYG Decoction for liver disease.