Evaluating the antibacterial efficacy of a silver nanocomposite surface coating against nosocomial pathogens as an antibiofilm strategy to prevent hospital infections.
James Butler, Sian Morgan, Lewis Jones, Mathew Upton, Alexandros Besinis
{"title":"Evaluating the antibacterial efficacy of a silver nanocomposite surface coating against nosocomial pathogens as an antibiofilm strategy to prevent hospital infections.","authors":"James Butler, Sian Morgan, Lewis Jones, Mathew Upton, Alexandros Besinis","doi":"10.1080/17435390.2024.2379809","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial nanocoatings may be a means of preventing nosocomial infections, which account for significant morbidity and mortality. The role of hospital sink traps in these infections is also increasingly appreciated. We describe the preparation, material characterization and antibacterial activity of a pipe cement-based silver nanocoating applied to unplasticized polyvinyl chloride, a material widely used in wastewater plumbing. Three-dimensional surface topography imaging and scanning electron microscopy showed increased roughness in all surface finishes versus control, with grinding producing the roughest surfaces. Silver stability within nanocoatings was >99.89% in deionized water and bacteriological media seeded with bacteria. The nanocoating exhibited potent antibiofilm (99.82-100% inhibition) and antiplanktonic (99.59-99.99% killing) activity against three representative bacterial species and a microbial community recovered from hospital sink traps. Hospital sink trap microbiota were characterized by sequencing the 16S rRNA gene, revealing the presence of opportunistic pathogens from genera including <i>Pseudomonas</i>, <i>Enterobacter</i> and <i>Clostridioides</i>. In a benchtop model sink trap system, nanocoating antibiofilm activity against this community remained significant after 11 days but waned following 25 days. Silver nanocoated disks in real-world sink traps in two university buildings had a limited antibiofilm effect, even though <i>in vitro</i> experiments using microbial communities recovered from the same traps demonstrated that the nanocoating was effective, reducing biofilm formation by >99.6% and killing >98% of planktonic bacteria. We propose that conditioning films forming in the complex conditions of real-world sink traps negatively impact nanocoating performance, which may have wider relevance to development of antimicrobial nanocoatings that are not tested in the real-world.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"410-436"},"PeriodicalIF":3.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17435390.2024.2379809","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Antimicrobial nanocoatings may be a means of preventing nosocomial infections, which account for significant morbidity and mortality. The role of hospital sink traps in these infections is also increasingly appreciated. We describe the preparation, material characterization and antibacterial activity of a pipe cement-based silver nanocoating applied to unplasticized polyvinyl chloride, a material widely used in wastewater plumbing. Three-dimensional surface topography imaging and scanning electron microscopy showed increased roughness in all surface finishes versus control, with grinding producing the roughest surfaces. Silver stability within nanocoatings was >99.89% in deionized water and bacteriological media seeded with bacteria. The nanocoating exhibited potent antibiofilm (99.82-100% inhibition) and antiplanktonic (99.59-99.99% killing) activity against three representative bacterial species and a microbial community recovered from hospital sink traps. Hospital sink trap microbiota were characterized by sequencing the 16S rRNA gene, revealing the presence of opportunistic pathogens from genera including Pseudomonas, Enterobacter and Clostridioides. In a benchtop model sink trap system, nanocoating antibiofilm activity against this community remained significant after 11 days but waned following 25 days. Silver nanocoated disks in real-world sink traps in two university buildings had a limited antibiofilm effect, even though in vitro experiments using microbial communities recovered from the same traps demonstrated that the nanocoating was effective, reducing biofilm formation by >99.6% and killing >98% of planktonic bacteria. We propose that conditioning films forming in the complex conditions of real-world sink traps negatively impact nanocoating performance, which may have wider relevance to development of antimicrobial nanocoatings that are not tested in the real-world.
期刊介绍:
Nanotoxicology invites contributions addressing research relating to the potential for human and environmental exposure, hazard and risk associated with the use and development of nano-structured materials. In this context, the term nano-structured materials has a broad definition, including ‘materials with at least one dimension in the nanometer size range’. These nanomaterials range from nanoparticles and nanomedicines, to nano-surfaces of larger materials and composite materials. The range of nanomaterials in use and under development is extremely diverse, so this journal includes a range of materials generated for purposeful delivery into the body (food, medicines, diagnostics and prosthetics), to consumer products (e.g. paints, cosmetics, electronics and clothing), and particles designed for environmental applications (e.g. remediation). It is the nano-size range if these materials which unifies them and defines the scope of Nanotoxicology .
While the term ‘toxicology’ indicates risk, the journal Nanotoxicology also aims to encompass studies that enhance safety during the production, use and disposal of nanomaterials. Well-controlled studies demonstrating a lack of exposure, hazard or risk associated with nanomaterials, or studies aiming to improve biocompatibility are welcomed and encouraged, as such studies will lead to an advancement of nanotechnology. Furthermore, many nanoparticles are developed with the intention to improve human health (e.g. antimicrobial agents), and again, such articles are encouraged. In order to promote quality, Nanotoxicology will prioritise publications that have demonstrated characterisation of the nanomaterials investigated.