Gradient-concentration RuCo electrocatalyst for efficient and stable electroreduction of nitrate into ammonia.

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-07-25 DOI:10.1038/s41467-024-50670-w
Xinhong Chen, Yumeng Cheng, Bo Zhang, Jia Zhou, Sisi He
{"title":"Gradient-concentration RuCo electrocatalyst for efficient and stable electroreduction of nitrate into ammonia.","authors":"Xinhong Chen, Yumeng Cheng, Bo Zhang, Jia Zhou, Sisi He","doi":"10.1038/s41467-024-50670-w","DOIUrl":null,"url":null,"abstract":"<p><p>Electrocatalytic nitrate reduction to ammonia holds great promise for developing green technologies for electrochemical ammonia energy conversion and storage. Considering that real nitrate resources often exhibit low concentrations, it is challenging to achieve high activity in low-concentration nitrate solutions due to the competing reaction of the hydrogen evolution reaction, let alone considering the catalyst lifetime. Herein, we present a high nitrate reduction performance electrocatalyst based on a Co nanosheet structure with a gradient dispersion of Ru, which yields a high NH<sub>3</sub> Faraday efficiency of over 93% at an industrially relevant NH<sub>3</sub> current density of 1.0 A/cm<sup>2</sup> in 2000 ppm NO<sub>3</sub><sup>-</sup> electrolyte, while maintaining good stability for 720 h under -300 mA/cm<sup>2</sup>. The electrocatalyst maintains high activity even in 62 ppm NO<sub>3</sub><sup>-</sup> electrolyte. Electrochemical studies, density functional theory, electrochemical in situ Raman, and Fourier-transformed infrared spectroscopy confirm that the gradient concentration design of the catalyst reduces the reaction energy barrier to improve its activity and suppresses the catalyst evolution caused by the expansion of the Co lattice to enhance its stability. The gradient-driven design in this work provides a direction for improving the performance of electrocatalytic nitrate reduction to ammonia.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11272931/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-50670-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocatalytic nitrate reduction to ammonia holds great promise for developing green technologies for electrochemical ammonia energy conversion and storage. Considering that real nitrate resources often exhibit low concentrations, it is challenging to achieve high activity in low-concentration nitrate solutions due to the competing reaction of the hydrogen evolution reaction, let alone considering the catalyst lifetime. Herein, we present a high nitrate reduction performance electrocatalyst based on a Co nanosheet structure with a gradient dispersion of Ru, which yields a high NH3 Faraday efficiency of over 93% at an industrially relevant NH3 current density of 1.0 A/cm2 in 2000 ppm NO3- electrolyte, while maintaining good stability for 720 h under -300 mA/cm2. The electrocatalyst maintains high activity even in 62 ppm NO3- electrolyte. Electrochemical studies, density functional theory, electrochemical in situ Raman, and Fourier-transformed infrared spectroscopy confirm that the gradient concentration design of the catalyst reduces the reaction energy barrier to improve its activity and suppresses the catalyst evolution caused by the expansion of the Co lattice to enhance its stability. The gradient-driven design in this work provides a direction for improving the performance of electrocatalytic nitrate reduction to ammonia.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高效稳定地将硝酸盐电还原成氨的梯度浓缩型 RuCo 电催化剂。
电催化硝酸盐还原为氨,为开发电化学氨能量转换和储存的绿色技术带来了巨大希望。考虑到实际硝酸盐资源通常浓度较低,在低浓度硝酸盐溶液中实现高活性具有挑战性,这是因为存在氢进化反应的竞争反应,更不用说考虑催化剂的使用寿命了。在此,我们提出了一种基于具有梯度分散 Ru 的 Co 纳米片结构的高硝酸盐还原性电催化剂,该催化剂在 2000 ppm NO3- 电解液中的工业相关 NH3 电流密度为 1.0 A/cm2 时,NH3 法拉第效率高达 93% 以上,同时在 -300 mA/cm2 下保持了 720 小时的良好稳定性。即使在 62 ppm NO3- 电解液中,该电催化剂也能保持高活性。电化学研究、密度泛函理论、电化学原位拉曼光谱和傅立叶变换红外光谱证实,催化剂的梯度浓度设计降低了反应能垒,从而提高了催化剂的活性,并抑制了 Co 晶格膨胀引起的催化剂演化,从而提高了催化剂的稳定性。这项工作中的梯度驱动设计为提高电催化硝酸盐还原成氨的性能提供了一个方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
An atlas of small non-coding RNAs in human preimplantation development. Astrocytic neuroligin 3 regulates social memory and synaptic plasticity through adenosine signaling in male mice. Biofunctionalized dissolvable hydrogel microbeads enable efficient characterization of native protein complexes. Concerted transcriptional regulation of the morphogenesis of hypothalamic neurons by ONECUT3. Cryo-EM investigation of ryanodine receptor type 3.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1