{"title":"Characterization and Identification of NPK Stress in Rice Using Terrestrial Hyperspectral Images.","authors":"Jinfeng Wang, Yuhang Chu, Guoqing Chen, Minyi Zhao, Jizhuang Wu, Ritao Qu, Zhentao Wang","doi":"10.34133/plantphenomics.0197","DOIUrl":null,"url":null,"abstract":"<p><p>Due to nutrient stress, which is an important constraint to the development of the global agricultural sector, it is now vital to timely evaluate plant health. Remote sensing technology, especially hyperspectral imaging technology, has evolved from spectral response modes to pattern recognition and vegetation monitoring. This study established a hyperspectral library of 14 NPK (nitrogen, phosphorus, potassium) nutrient stress conditions in rice. The terrestrial hyperspectral camera (SPECIM-IQ) collected 420 rice stress images and extracted as well as analyzed representative spectral reflectance curves under 14 stress modes. The canopy spectral profile characteristics, vegetation index, and principal component analysis demonstrated the differences in rice under different nutrient stresses. A transformer-based deep learning network SHCFTT (SuperPCA-HybridSN-CBAM-Feature tokenization transformer) was established for identifying nutrient stress patterns from hyperspectral images while being compared with classic support vector machines, 1D-CNN (1D-Convolutional Neural Network), and 3D-CNN. The total accuracy of the SHCFTT model under different modeling strategies and different years ranged from 93.92% to 100%, indicating the positive effect of the proposed method on improving the accuracy of identifying nutrient stress in rice.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"6 ","pages":"0197"},"PeriodicalIF":7.6000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11266478/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Phenomics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.34133/plantphenomics.0197","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Due to nutrient stress, which is an important constraint to the development of the global agricultural sector, it is now vital to timely evaluate plant health. Remote sensing technology, especially hyperspectral imaging technology, has evolved from spectral response modes to pattern recognition and vegetation monitoring. This study established a hyperspectral library of 14 NPK (nitrogen, phosphorus, potassium) nutrient stress conditions in rice. The terrestrial hyperspectral camera (SPECIM-IQ) collected 420 rice stress images and extracted as well as analyzed representative spectral reflectance curves under 14 stress modes. The canopy spectral profile characteristics, vegetation index, and principal component analysis demonstrated the differences in rice under different nutrient stresses. A transformer-based deep learning network SHCFTT (SuperPCA-HybridSN-CBAM-Feature tokenization transformer) was established for identifying nutrient stress patterns from hyperspectral images while being compared with classic support vector machines, 1D-CNN (1D-Convolutional Neural Network), and 3D-CNN. The total accuracy of the SHCFTT model under different modeling strategies and different years ranged from 93.92% to 100%, indicating the positive effect of the proposed method on improving the accuracy of identifying nutrient stress in rice.
期刊介绍:
Plant Phenomics is an Open Access journal published in affiliation with the State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University (NAU) and published by the American Association for the Advancement of Science (AAAS). Like all partners participating in the Science Partner Journal program, Plant Phenomics is editorially independent from the Science family of journals.
The mission of Plant Phenomics is to publish novel research that will advance all aspects of plant phenotyping from the cell to the plant population levels using innovative combinations of sensor systems and data analytics. Plant Phenomics aims also to connect phenomics to other science domains, such as genomics, genetics, physiology, molecular biology, bioinformatics, statistics, mathematics, and computer sciences. Plant Phenomics should thus contribute to advance plant sciences and agriculture/forestry/horticulture by addressing key scientific challenges in the area of plant phenomics.
The scope of the journal covers the latest technologies in plant phenotyping for data acquisition, data management, data interpretation, modeling, and their practical applications for crop cultivation, plant breeding, forestry, horticulture, ecology, and other plant-related domains.