Xiaohai Zhang, Nancy L Reinsmoen, Jon A Kobashigawa
{"title":"HLA Mismatches Identified by a Novel Algorithm Predict Risk of Antibody-mediated Rejection From De Novo Donor-specific Antibodies.","authors":"Xiaohai Zhang, Nancy L Reinsmoen, Jon A Kobashigawa","doi":"10.1097/TP.0000000000005140","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The development of de novo donor-specific antibodies (dnDSA) and antibody-mediated rejection (AMR) remains a barrier to long-term graft and patient survival. Most dnDSA are directed against mismatched donor HLA-DQ antigens. Here, we describe a novel algorithm, which we have termed categorical amino acid mismatched epitope, to evaluate HLA-DQ mismatches.</p><p><strong>Methods: </strong>In this algorithm, amino acid residues of HLA-DQ protein were categorized into 4 groups based on their chemical characteristics. The likelihood of categorically mismatched peptides presented by the recipient's HLA-DRB1 was expressed as a normalized value, %Rank score. Categorical HLA-DQ mismatches were analyzed in 386 heart transplant recipients who were mismatched with their donors at the HLA-DQB1 locus.</p><p><strong>Results: </strong>We found that the presence of DQB1 mismatches with %Rank score ≤1 was associated with the development of dnDSA (P = 0.002). Furthermore, dnDSA increased the risk of AMR only in recipients who had DQ mismatches with %Rank score ≤1 (hazard ratio = 5.8), but the freedom from AMR was comparable between recipients with dnDSA and those without dnDSA if %Rank scores of DQ mismatching were >1.</p><p><strong>Conclusions: </strong>These results suggest that HLA-DQ mismatches evaluated by the categorical amino acid mismatched epitope algorithm can stratify the risk of development of dnDSA and AMR in heart transplant recipients.</p>","PeriodicalId":23316,"journal":{"name":"Transplantation","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transplantation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/TP.0000000000005140","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The development of de novo donor-specific antibodies (dnDSA) and antibody-mediated rejection (AMR) remains a barrier to long-term graft and patient survival. Most dnDSA are directed against mismatched donor HLA-DQ antigens. Here, we describe a novel algorithm, which we have termed categorical amino acid mismatched epitope, to evaluate HLA-DQ mismatches.
Methods: In this algorithm, amino acid residues of HLA-DQ protein were categorized into 4 groups based on their chemical characteristics. The likelihood of categorically mismatched peptides presented by the recipient's HLA-DRB1 was expressed as a normalized value, %Rank score. Categorical HLA-DQ mismatches were analyzed in 386 heart transplant recipients who were mismatched with their donors at the HLA-DQB1 locus.
Results: We found that the presence of DQB1 mismatches with %Rank score ≤1 was associated with the development of dnDSA (P = 0.002). Furthermore, dnDSA increased the risk of AMR only in recipients who had DQ mismatches with %Rank score ≤1 (hazard ratio = 5.8), but the freedom from AMR was comparable between recipients with dnDSA and those without dnDSA if %Rank scores of DQ mismatching were >1.
Conclusions: These results suggest that HLA-DQ mismatches evaluated by the categorical amino acid mismatched epitope algorithm can stratify the risk of development of dnDSA and AMR in heart transplant recipients.
期刊介绍:
The official journal of The Transplantation Society, and the International Liver Transplantation Society, Transplantation is published monthly and is the most cited and influential journal in the field, with more than 25,000 citations per year.
Transplantation has been the trusted source for extensive and timely coverage of the most important advances in transplantation for over 50 years. The Editors and Editorial Board are an international group of research and clinical leaders that includes many pioneers of the field, representing a diverse range of areas of expertise. This capable editorial team provides thoughtful and thorough peer review, and delivers rapid, careful and insightful editorial evaluation of all manuscripts submitted to the journal.
Transplantation is committed to rapid review and publication. The journal remains competitive with a time to first decision of fewer than 21 days. Transplantation was the first in the field to offer CME credit to its peer reviewers for reviews completed.
The journal publishes original research articles in original clinical science and original basic science. Short reports bring attention to research at the forefront of the field. Other areas covered include cell therapy and islet transplantation, immunobiology and genomics, and xenotransplantation.